Citation: | WANG Xingxing, TIAN Jiahao, WU Shengjin, KANG Kejia, LING Zicheng, DU Quanbin, WEN Guodong. Effect of WC content on the interface microstructure of nickel/tungsten carbide composite brazing coating[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(1): 40-46. DOI: 10.12073/j.hjxb.20221025002 |
Nickel/tungsten carbide composite coating has high wear resistance, corrosion resistance, and high hardness characteristics. It is widely used in shield machine parts, rotary blade, and other fields. In order to improve the lifespan of the hydraulic machinery overflow components, the nickel/tungsten carbide composite brazing coating was successfully prepared. It was combined with the surface of austenitic stainless steel by brazing coating method with thermal radiation in vacuum furnace. In the joint, WC particles and nickel-based powder brazing alloys were used as coating materials. The microstructure and interfacial behavior of the brazing coating were analyzed with the scanning electron microscopy, X-ray diffractometer, and metallographic microscopy. The results show that the interface between WC hard-phase and nickel-based brazing alloy achieved mechanical and metallurgical bonding. There is certain component diffusion between the brazing coating and steel substrate. And the thickness of narrowest diffusion area is about 100 μm. When the WC content is lower than 25wt.%, the brazing coating has better wettability on the steel substrate. The internal denseness of the coating stays in high level. Meanwhile, the minimum porosity in the composite coating can be kept at 1.08%.
[1] |
龙伟民, 刘大双, 张冠星, 等. 感应钎涂粉末熔融及传热机制[J]. 焊接学报, 2021, 42(11): 29 − 34.
Long Weimin, Liu Dashuang, Zhang Guanxing, et al. Melting and heat transfer mechanism of powder by induction brazing coating[J]. Transactions of the China Welding Institution, 2021, 42(11): 29 − 34.
|
[2] |
王星星, 武胜金, 李帅, 等. 功能性钎涂技术的研究进展与应用现状[J]. 中国有色金属学报, 2021, 31(1): 72 − 83.
Wang Xingxing, Wu Shengjin, Li Shuai, et al. Research progress and application status of functional brazed coating technology[J]. The Chinese Journal of Nonferrous Metals, 2021, 31(1): 72 − 83.
|
[3] |
李宇佳, 龙伟民, 孙志鹏, 等. 钎涂增材在农机触土部件上的应用及发展趋势[J]. 电焊机, 2021, 51(8): 64 − 69, 115.
Li Yujia, Long Weimin, Sun Zhipeng, et al. Application and development trend of braze coating technology in soil-engaging components of agricultural machinery[J]. Electric Welding Machine, 2021, 51(8): 64 − 69, 115.
|
[4] |
杨蒙瑶, 陈焕文, 郭建军, 等. 石墨/镍基金属钎涂层界面结构分析及性能[J]. 焊接学报, 2017, 38(2): 120 − 124.
Yang Mengyao, Chen Huanwen, Guo Jianjun et al. Microstructures analysis and performance research of graphite/nickel-based brazing coating[J]. Transactions of the China Welding Institution, 2017, 38(2): 120 − 124.
|
[5] |
易艳林, 陆力. 水轮机泥沙磨损研究进展[J]. 水利水电技术, 2014, 45(4): 160 − 163.
Yi Yanlin, Lu Li. Progress of research on silt abrasive erosion of hydraulic turbine[J]. Water Resources and Hydropower Engineering, 2014, 45(4): 160 − 163.
|
[6] |
司浩, 秦建, 钟素娟, 等. 钎涂技术的研究进展[J]. 材料导报, 2021, 35(z2): 333 − 340.
Si Hao, Qin Jian, Zhong Sujuan, et al. Research progress of brazing technology[J]. Materials Reports, 2021, 35(z2): 333 − 340.
|
[7] |
陆善平, 许先忠. NiCrBSi—WC耐磨钎焊涂层的制备[J]. 金属学报, 1999, 35(1): 83 − 85.
Lu Shanping, Xu Xianzhong. Fabrication of NiCrBSi-WC wear brazing coating[J]. Acta Metallrugica Sinica, 1999, 35(1): 83 − 85.
|
[8] |
李豪赛, 贾云飞, 轩福贞. 基于柔性金属布技术的梯度WC增强NiCrBSi合金涂层的制备及性能[J]. 机械工程材料, 2018, 42(6): 59 − 64.
Li Haosai, Jia Yunfei, Xuan Fuzhen. Preparation and performance of gradient WC reinforced NiCrBSi alloy coating based on flexible metallic cloth technique[J]. Materials for Mechanical Engineering, 2018, 42(6): 59 − 64.
|
[9] |
Xu X P, He L, Xia C Z, et al. Microstructure and interface bonding strength of WC-10Ni/NiCrBSi composite coating by vacuum brazing[J]. High Temperature Materials and Processes, 2019, 38: 60 − 68. doi: 10.1515/htmp-2017-0127
|
[10] |
周许升, 邹伟, 龙伟民, 等. WC粒度对WC-Ni钎涂耐磨涂层组织性能的影响[J]. 电焊机, 2018, 48(3): 205 − 210.
Zhou Xusheng, Zou Wei, Long Weimin, et al. Effect of WC particle size on microstructure and properties of WC-Ni wear resistant brazing coating[J]. Electric Welding Machine, 2018, 48(3): 205 − 210.
|
[11] |
杜辉辉, 赵运才, 黄丽容, 等. 激光重熔轨迹对Fe基Ni/WC喷涂层摩擦学性能的影响[J]. 中国表面工程, 2018, 31(3): 152-160.
Du Huihui, Zhao Yuncai, Huang Lirong, et al. Influences of laser remelting puths on tribological property of Fe-based Ni/WC spraying coatings [J]. China Surface Engineering, 2018, 31(3): 152-160.
|
[12] |
张煜, 娄丽艳, 徐庆龙, 等. 超高速激光熔覆镍基WC涂层的显微结构与耐磨性能[J]. 金属学报, 2020, 56(11): 1530 − 1540.
Zhang Yu, Lou Liyan, Xu Qinglong, et al. Microstructure and wear resistance of Ni-based WC coating by ultra-high speed laser cladding[J]. Acta Metallurgica Sinica, 2020, 56(11): 1530 − 1540.
|
[13] |
路王珂, 李亚敏, 张喜冬, 等. WC含量对真空熔覆镍基合金涂层组织及性能的影响[J]. 材料保护, 2018, 51(5): 94 − 97, 102.
Lu Wangke, Li Yamin, Zhang Xidong, et al. Effect of WC content on microstructure and properties of Ni-based alloy coating by vacuum cladding[J]. Materials Protection, 2018, 51(5): 94 − 97, 102.
|
[14] |
Salimi A, Sanjabi S. Influence of Cu shell on the anomalous WC grain growth in Ni-base brazed cladding[J]. Surface and Coatings Technology, 2019, 360: 335 − 346. doi: 10.1016/j.surfcoat.2018.12.112
|
[15] |
朱晨颖, 孙志鹏, 王宇. 感应钎涂金刚石/镍基合金复合涂层的性能[J]. 焊接学报, 2022, 43(2): 106 − 112.
Zhu Chenying, Sun Zhipeng, Wang Yu. Properties of induction brazing diamond/Ni-based alloy composite coating[J]. Transactions of the China Welding Institution, 2022, 43(2): 106 − 112.
|
1. |
吴奇隆,赵宏伟,张雷,孙志鹏,李宇佳,程战,袁世成. 激光重熔对金刚石/镍基复合涂层组织性能的影响. 稀有金属材料与工程. 2025(02): 437-444 .
![]() | |
2. |
刘军,纪乙智,李巍,廖斌,曹志刚,黄修喜,刘思晔,董会. 真空热处理超音速火焰喷涂制备Ni基WC涂层的结构与耐磨性. 金属热处理. 2025(03): 284-290 .
![]() |