Advanced Search
ZHANG Gongda, ZHU Qi, LIU Yayun, WANG Chuanyang. Effect of surface microstructure on laser welding properties of aluminum alloy and PA66[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(8): 28-33, 48. DOI: 10.12073/j.hjxb.20221002002
Citation: ZHANG Gongda, ZHU Qi, LIU Yayun, WANG Chuanyang. Effect of surface microstructure on laser welding properties of aluminum alloy and PA66[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(8): 28-33, 48. DOI: 10.12073/j.hjxb.20221002002

Effect of surface microstructure on laser welding properties of aluminum alloy and PA66

More Information
  • Received Date: October 01, 2022
  • Available Online: July 23, 2023
  • In order to improve the strength of laser welding joints between metal and plastic, a method of microstructure laser welding of dissimilar materials was proposed. In order to explore the influence of surface microstructure parameters on the strength of metal and plastic laser welding joints, femtosecond laser was used. Microstructures with different parameters were prepared on the surface. The influence mechanism of microstructure parameters on the strength of welded joints was explored by means of tensile shear experiments, connection interface and cross-sectional microscopic observations. The joint strength is related to the filling effect of the microstructure and the connection area. As the size of the microstructure increases, the strength of the metal-plastic welded joint increases, but too large size of the microstructure will make it impossible for the molten plastic to fully fill the microstructure. The appearance of unfilled defects will reduce the strength of the welded joint. As the separation distance increases, the microstructure coverage decreases, the effective connection area between metal and plastic decreases, and the strength of welded joints continues to decrease.
  • Xu X, Chen X B, Liu Z, et al. Reliability-based design for lightweight vehicle structures with uncertain manufacturing accuracy[J]. Applied Mathematical Modelling, 2021, 95: 22 − 37. doi: 10.1016/j.apm.2021.01.047
    Tan D, Wu Y S, Feng J, et al. Lightweight design of the in-wheel motor considering the coupled electromagnetic-thermal effect[J]. Mechanics Based Design of Structures and Machines, 2022, 50(3): 935 − 953. doi: 10.1080/15397734.2020.1734461
    Park J H, Kim S K, Choi B I, et al. Optimal design of rear chassis components for lightweight automobile using design of experiment[J]. Materialwissenschaft und Werkstofftechnik, 2010, 41(5): 391 − 397. doi: 10.1002/mawe.201000614
    Luo Y T, Tan D. Lightweight design of an in-wheel motor using the hybrid optimization method[J]. Proceedings of the Institution of Mechanical Engineers Part D-Journal of Automobile Engineering, 2013, 227(11): 1590 − 1602. doi: 10.1177/0954407013497194
    Braga D F O, Tavares S M O, Da Silva L F M, et al. Advanced design for lightweight structures: Review and prospects[J]. Progress in Aerospace Sciences, 2014, 69: 29 − 39. doi: 10.1016/j.paerosci.2014.03.003
    Duan L B, Xiao N C, Hu Z H, et al. An efficient lightweight design strategy for body-in-white based on implicit parameterization technique[J]. Structural and Multidisciplinary Optimization, 2017, 55(5): 1927 − 1943. doi: 10.1007/s00158-016-1621-0
    He K B, Huo H, Zhang Q. Urban air pollution in China: Current status, characteristics, and progress[J]. Annual Review of Energy and the Environment, 2002, 27: 397 − 431. doi: 10.1146/annurev.energy.27.122001.083421
    Feng Y Y, Chen S Q, Zhang L X. System dynamics modeling for urban energy consumption and CO2 emissions: A case study of Beijing, China[J]. Ecological Modelling, 2013, 252: 44 − 52. doi: 10.1016/j.ecolmodel.2012.09.008
    Taub A I, Luo A A. Advanced lightweight materials and manufacturing processes for automotive applications[J]. MRS Bulletin, 2015, 40(12): 1045 − 1053. doi: 10.1557/mrs.2015.268
    Delogu M, Del Pero F, Pierini M. Lightweight design solutions in the automotive field: Environmental modelling based on fuel reduction value applied to diesel turbocharged vehicles[J]. Sustainability, 2016, 8(11): 1167. doi: 10.3390/su8111167
    Lambiase F, Genna S. Laser-assisted direct joining of AISI304 stainless steel with polycarbonate sheets: Thermal analysis, mechanical characterization, and bonds morphology[J]. Optics and Laser Technology, 2017, 88: 205 − 214. doi: 10.1016/j.optlastec.2016.09.028
    Li Y, Zhan X H, Gao C Y, et al. Comparative study of infrared laser surface treatment and ultraviolet laser surface treatment of CFRP laminates[J]. International Journal of Advanced Manufacturing Technology, 2019, 102(9-12): 4059 − 4071. doi: 10.1007/s00170-019-03368-z
    Zhan X H, Li Y, Gao C Y, et al. Effect of infrared laser surface treatment on the microstructure and properties of adhesively CFRP bonded joints[J]. Optics and Laser Technology, 2018, 106: 398 − 409. doi: 10.1016/j.optlastec.2018.04.023
    Gao Q Y, Li Y, Wang H E, et al. Effect of scanning speed with UV laser cleaning on adhesive bonding tensile properties of CFRP[J]. Applied Composite Materials, 2019, 26(4): 1087 − 1099. doi: 10.1007/s10443-019-09768-4
    Kawahito Y, Niwa Y, Katayama S. Laser direct joining between stainless steel and polyethylene terephthalate plastic and reliability evaluation of joints[J]. Welding International, 2014, 28(2): 107 − 113. doi: 10.1080/09507116.2012.715883
    Chen Z, Huang Y, Han F L, et al. Numerical and experimental investigation on laser transmission welding of fiberglass-doped PP and ABS[J]. Journal of Manufacturing Processes, 2018, 31: 1 − 8. doi: 10.1016/j.jmapro.2017.10.013
    Katayama S, Kawahito Y. Laser direct joining of metal and plastic[J]. Scripta Materialia, 2008, 59(12): 1247 − 1250. doi: 10.1016/j.scriptamat.2008.08.026
    Chludzinski M, Dos Santos R E, Churiaque C, et al. Pulsed laser welding applied to metallic materials-A material approach[J]. Metals, 2021, 11(4): 640. doi: 10.3390/met11040640
    Goncalves L, Duarte F M, Martins C I, et al. Laser welding of thermoplastics: An overview on lasers, materials, processes and quality[J]. Infrared Physics & Technology, 2021, 119: 103931.
    Amend P, Mallmann G, Roth S, et al. Process-structure-property relationship of laser-joined thermoplastic metal hybrids[J]. Journal of Laser Applications, 2016, 28(2): 022403. doi: 10.2351/1.4944099
    Jung K W, Kawahito Y, Takahashi M, et al. Laser direct joining of carbon fiber reinforced plastic to aluminum alloy[J]. Journal of Laser Applications, 2013, 25(3): 032003. doi: 10.2351/1.4794297
    Liu J, Cui W, Shi Y, et al. Effect of surface texture and ultrasonic on tensile property of 316L/PET dissimilar joints[J]. Journal of Manufacturing Processes, 2020, 50: 430 − 439. doi: 10.1016/j.jmapro.2019.12.030
  • Related Articles

    [1]ZHOU Guangtao, KUANG Jingzhen, WEN Qiuling, CAI Zupeng, SU Liji. Microstructure and property of copper laser welding joint assisted by the surface pretreated by nanosecond laser direct writing[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(4): 21-29. DOI: 10.12073/j.hjxb.20220908002
    [2]TENG Bin, WU Pengbo, LI Xiaoguang, ZOU Jipeng, WANG Shiyang, CHEN Xiaoyu, JIA Lichao. Microstructure and properties of GH3128 alloy laser welding joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(7): 82-87. DOI: 10.12073/j.hjxb.20220406001
    [3]NIU Xiaonan, CUI Li, WANG Peng, HE Dingyong, CAO Qing. Effect of nickel aluminum bronze transition layer on microstructure and mechanical properties of laser welded titanium alloy/stainless steel joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(1): 42-47. DOI: 10.12073/j.hjxb.20210722002
    [4]DING Hao1, BAO Yumei1, ZHANG Ruizhi1, CHAI Guozhong1, YANG Jianguo2. Study on welding strength and defect assessment of the T2 copper-45 steel dissimilar material[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(5): 43-46. DOI: 10.12073/j.hjxb.2018390119
    [5]SHI Mingxiao, ZHAO Jian, HU Qingxian, CHEN Shujin, ZHOU Fangming, WANG Weilin. Influence of the parameters of welding procedure on mechanical properties of laser welded SS/Nb joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2017, 38(4): 72-76. DOI: 10.12073/j.hjxb.20170417
    [6]XUE Zhiqing, HU Shengsun, ZUO Di, SHEN Junqi. Microstructural characteristics and mechanical properties of laser-welded copper and aluminum[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2013, (10): 51-54.
    [7]SHAN Chuang, SONG Gang, LIU Liming. Effect of laser-TIG hybrid welding parameters on joint of Mg to steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (6): 57-60.
    [8]QIN Guo-liang, LI Xiao-yu, WANG Xu-you, LIN Shang-yang. Influence of Nd:YAG laser+pulsed GMAW arc hybrid welding parameters on weld width[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2006, (9): 73-76.
    [9]WANG Hong-ying, LI Zhi-jun. Effects of welding parameters on CO2 laser welding of magnesium alloys[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2006, (2): 64-68.
    [10]ZHU Liang, CHEN Jian-hong. Prediction of tensile properties of welded joint with mechanical heterogeneity[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2005, (5): 13-16,26.
  • Cited by

    Periodical cited type(8)

    1. 邵文杰,丁云龙,刘冰洋,庄志国,韩冰. 焊接温度对Cu/Al真空扩散焊接接头组织与性能的影响. 材料热处理学报. 2025(04): 218-225 .
    2. 成先明,杨可,邵壮,王健,黄思蜀,张鑫. 超声波焊接能量对铜/铝导线接头结合性能的影响. 焊接学报. 2024(04): 65-70+132-133 . 本站查看
    3. 张义磊. 压力容器内壁涂层的耐磨与耐腐蚀性能研究. 化工装备技术. 2023(01): 69-71 .
    4. 李欢,黄朝望,周亢,张长鑫,曾才有. 铝/钢大功率超声波焊接过程模拟与试验验证. 中国机械工程. 2022(02): 226-233 .
    5. 宋一诺,曲杰,王廷. Cu/Al/Cu层状金属复合材料电子束焊接接头特征. 焊接. 2022(09): 50-54 .
    6. 李欢,张长鑫,敖三三,曾才有,周亢. 辅助电流对Cu/Al大功率超声波焊接的影响. 稀有金属材料与工程. 2022(12): 4624-4631 .
    7. 陆斌. 不锈钢制压力容器焊缝接头性能研究. 特种设备安全技术. 2021(04): 17-19 .
    8. 章继. 超声波焊接加工质量受焊头压力的影响分析. 新型工业化. 2020(07): 95-97 .

    Other cited types(2)

Catalog

    Article views (216) PDF downloads (68) Cited by(10)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return