Advanced Search
LI Zhigang, WEI Chengfa, LIU Dejun, YANG Xiang. Mechanism on dielectric breakdown of arc plasma in high pressure underwater wet welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(8): 49-56. DOI: 10.12073/j.hjxb.20220923001
Citation: LI Zhigang, WEI Chengfa, LIU Dejun, YANG Xiang. Mechanism on dielectric breakdown of arc plasma in high pressure underwater wet welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(8): 49-56. DOI: 10.12073/j.hjxb.20220923001

Mechanism on dielectric breakdown of arc plasma in high pressure underwater wet welding

More Information
  • Received Date: September 22, 2022
  • Available Online: July 03, 2023
  • In order to study the mechanism of arc plasma breakdown in deep water wet welding, a high-pressure underwater wet welding experimental platform was established. Spectral maps of the arc initiation stage at a depth of 40 m were obtained, and a three-dimensional numerical model of arc breakdown discharge at a depth of 40 m was established based on the PIC-MCC method and analyzed. The results of spectral diagnosis arc plasma temperature, electron number density and numerical model analysis were compared, and the rationality and correctness of the model were verified. Based on the main components of the arc plasma obtained from the arc spectroscopy, a study was conducted on the dynamic evolution process of the arc plasma in high-pressure underwater wet welding from the perspective of microscopic particles, and the dynamic distribution, number of particles, temperature and electron number density of the arc plasma were obtained. The results showed that H+, OH+ and O+ were mainly generated by the ionization collision between the electron and the background component water molecule, and the number of OH+ increased fastest, followed by H+, and O+ last, the number of OH+ particles was far greater than the number of H+ and O+ particles; During the collision between electrons and background gas, the energy shifted, and the kinetic energy of electrons moving to the dielectric layer of the electrode decreased, the ionization collision reaction between electrons and the dielectric layer of the electrode weakened until saturation was reached.
  • 叶建雄, 彭星玲, 李兵. 水下湿法焊接研究进展[J]. 电焊机, 2020, 50(9): 111 − 117. doi: 10.7512/j.issn.1001-2303.2020.09.12

    Ye Jianxiong, Peng Xingling, Li Bing. Research development of underwater wet welding[J]. Electric Welding Machine, 2020, 50(9): 111 − 117. doi: 10.7512/j.issn.1001-2303.2020.09.12
    李显东. 不均匀电场下水中微秒脉冲放电过程及机理研究[D]. 武汉: 华中科技大学, 2018.

    Li Xiandong. Study on the process and mechanism of microsecond pulse discharge in water under uneven electric field [D] Wuhan: Huazhong University of Science and Technology, 2018.
    Babaeva N Y, Tereshonok D V, Naidis G V. Initiation of breakdown in bubbles immersed in liquids: pre-existed charges versus bubble size[J]. Journal of Physics D:Applied Physics, 2015, 48(35): 355201. doi: 10.1088/0022-3727/48/35/355201
    Fujita H, Kanazawa S, Ohtanik, et al. Initiation process and propagation mechanism of positive streamer discharge in water[J]. Journal of Applied Physics, 2014, 116(21): 213301. doi: 10.1063/1.4902862
    Fan Ding, Yao Xinglong, Hou Yingjie, et al. The study of arc behavior with different content of copper vapor in GTAW[J]. China Welding, 2022, 31(2): 1 − 14.
    Li X D, He H, Xiao T F, et al. Pre-breakdown processes in water under ultra-long pulses: Bubble-streamer dynamics and their transition[J]. Journal of Physics of Fluids, 2021, 33(10): 107102. doi: 10.1063/5.0065774
    张晓峻, 董婉佳, 孙露, 等. 水的光学特性实验研究[J]. 实验技术与管理, 2014(3): 43 − 45,50. doi: 10.16791/j.cnki.sjg.2014.03.012

    Zhang Xiaojun, Dong Wanjia, Sun Lu, et al. Experimental study on the optical properties of water[J]. Experimental Technology and Management, 2014(3): 43 − 45,50. doi: 10.16791/j.cnki.sjg.2014.03.012
    Martin, Edward A. Experimental investigation of a high-energy density, high-pressure arc plasma[J]. Journal of Applied Physics, 1960, 31(2): 255 − 267. doi: 10.1063/1.1735555
    夏炎, 吴昕翀. 局部热力学平衡态电弧等离子体的电导率计算研究[J]. 电气开关, 2020, 58(2): 19 − 23. doi: 10.3969/j.issn.1004-289X.2020.02.006

    Xia Yan, Wu Xinchong. Study on conductivity calculation of arc plasma in local thermodynamic equilibrium[J]. Electrical Switch, 2020, 58(2): 19 − 23. doi: 10.3969/j.issn.1004-289X.2020.02.006
    徐翔. 水下湿法焊接电弧等离子体温度及其组分研究[D]. 南昌: 华东交通大学, 2020.

    Xu Xiang. Research on the temperature and composition of underwater wet welding arc plasma [D]. Nanchang: East China Jiaotong University, 2020.
    Stranathan J D. Dielectric constant of water vapor[J]. Physical Review, 1935, 48(6): 538 − 544. doi: 10.1103/PhysRev.48.538
    李志刚, 祝林, 黄卫, 等. 水下湿法药芯焊丝焊接气泡动态演变与其声脉冲分析[J]. 焊接学报, 2021, 42(4): 36 − 41. doi: 10.12073/j.hjxb.20200517001

    Li Zhigang, Zhu Lin, Huang Wei, et al. Dynamic evolution of bubbles and analysis of acoustic pulses in underwater wet flux cored wire welding[J]. Transactions of the China Welding Institution, 2021, 42(4): 36 − 41. doi: 10.12073/j.hjxb.20200517001
    Zhao B, Chen J, Wu C, et al. Numerical simulation of bubble and arc dynamics during underwater wet flux-cored arc welding[J]. Journal of Manufacturing Processes, 2020, 59: 167 − 185. doi: 10.1016/j.jmapro.2020.09.054
    邢长健. 水下湿法药芯焊丝焊接熔滴过渡过程的数值模拟[D]. 济南: 山东大学, 2019.

    Xing Changjian. Numerical simulation of droplet transfer process in underwater wet flux cored wire welding [D]. Jinan: Shandong University, 2019.
    Pancheshnyi S. 等离子数据交换库[DB/OL]. https://fr.lxcat.net/data/set_type.php, 2020-01-10.
    Dermott E, Cullen J H, Hubbell L K. 光子和电子相互作用数据库[DB/OL]. https://www-nds.iaea.org/epdl97/, 2020-04-03.
    李志刚, 刘德俊, 张世帅, 等. 不同水深下水下湿法焊接电弧引弧温度计算[J]. 光谱学与光谱分析, 2021, 41(5): 1586 − 1592.

    Li Zhigang, Liu Dejun, Zhang Shishuai, et al. Calculation of arc starting temperature of underwater wet welding arc in different water depths[J]. Spectroscopy and Spectral Analysis, 2021, 41(5): 1586 − 1592.
    王军毅, 施芸城. 大气压下Ar/CF_4纳秒脉冲放电等离子体特性[J]. 东华大学学报(自然科学版), 2021, 47(2): 125 − 130. doi: 10.19886/j.cnki.dhdz.2019.0395

    Wang Junyi, Shi Yuncheng. Characteristics of Ar/CF_4 nanosecond pulsed discharge plasma at atmospheric pressure[J]. Journal of Donghua University (Natural Science Edition), 2021, 47(2): 125 − 130. doi: 10.19886/j.cnki.dhdz.2019.0395
    Venger R, Tmenova T, Valensi F, et al. Detailed investigation of the electric discharge plasma between copper electrodes immersed into water[J]. Atoms, 2017, 5(4): 40 − 53. doi: 10.3390/atoms5040040
    Yang L, Tan X, Wan X, et al. Stark broadening for diagnostics of the electron density in non-equilibrium plasma utilizing isotope hydrogen alpha lines[J]. Journal of Applied Physics, 2014, 115(16): 163106. doi: 10.1063/1.4873960
    石里男. 焊接电弧引燃过程的机理分析[D]. 北京: 北京工业大学, 2011.

    Shi Linan. Mechanism analysis of welding arc ignition process [D]. Beijing: Beijing University of Technology, 2011.
  • Cited by

    Periodical cited type(2)

    1. 刘伟,张鑫,李素丽,李小龙. 基于焦耳热增材制造过程的温度场分析研究. 焊接技术. 2023(10): 1-4 .
    2. 张鑫,刘伟,张伟博,李小龙. 金属3D打印焦耳热最大变形量数值分析. 焊接技术. 2023(11): 1-5 .

    Other cited types(0)

Catalog

    Article views (216) PDF downloads (63) Cited by(2)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return