Citation: | LI Zhigang, WEI Chengfa, LIU Dejun, YANG Xiang. Mechanism on dielectric breakdown of arc plasma in high pressure underwater wet welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(8): 49-56. DOI: 10.12073/j.hjxb.20220923001 |
叶建雄, 彭星玲, 李兵. 水下湿法焊接研究进展[J]. 电焊机, 2020, 50(9): 111 − 117. doi: 10.7512/j.issn.1001-2303.2020.09.12
Ye Jianxiong, Peng Xingling, Li Bing. Research development of underwater wet welding[J]. Electric Welding Machine, 2020, 50(9): 111 − 117. doi: 10.7512/j.issn.1001-2303.2020.09.12
|
李显东. 不均匀电场下水中微秒脉冲放电过程及机理研究[D]. 武汉: 华中科技大学, 2018.
Li Xiandong. Study on the process and mechanism of microsecond pulse discharge in water under uneven electric field [D] Wuhan: Huazhong University of Science and Technology, 2018.
|
Babaeva N Y, Tereshonok D V, Naidis G V. Initiation of breakdown in bubbles immersed in liquids: pre-existed charges versus bubble size[J]. Journal of Physics D:Applied Physics, 2015, 48(35): 355201. doi: 10.1088/0022-3727/48/35/355201
|
Fujita H, Kanazawa S, Ohtanik, et al. Initiation process and propagation mechanism of positive streamer discharge in water[J]. Journal of Applied Physics, 2014, 116(21): 213301. doi: 10.1063/1.4902862
|
Fan Ding, Yao Xinglong, Hou Yingjie, et al. The study of arc behavior with different content of copper vapor in GTAW[J]. China Welding, 2022, 31(2): 1 − 14.
|
Li X D, He H, Xiao T F, et al. Pre-breakdown processes in water under ultra-long pulses: Bubble-streamer dynamics and their transition[J]. Journal of Physics of Fluids, 2021, 33(10): 107102. doi: 10.1063/5.0065774
|
张晓峻, 董婉佳, 孙露, 等. 水的光学特性实验研究[J]. 实验技术与管理, 2014(3): 43 − 45,50. doi: 10.16791/j.cnki.sjg.2014.03.012
Zhang Xiaojun, Dong Wanjia, Sun Lu, et al. Experimental study on the optical properties of water[J]. Experimental Technology and Management, 2014(3): 43 − 45,50. doi: 10.16791/j.cnki.sjg.2014.03.012
|
Martin, Edward A. Experimental investigation of a high-energy density, high-pressure arc plasma[J]. Journal of Applied Physics, 1960, 31(2): 255 − 267. doi: 10.1063/1.1735555
|
夏炎, 吴昕翀. 局部热力学平衡态电弧等离子体的电导率计算研究[J]. 电气开关, 2020, 58(2): 19 − 23. doi: 10.3969/j.issn.1004-289X.2020.02.006
Xia Yan, Wu Xinchong. Study on conductivity calculation of arc plasma in local thermodynamic equilibrium[J]. Electrical Switch, 2020, 58(2): 19 − 23. doi: 10.3969/j.issn.1004-289X.2020.02.006
|
徐翔. 水下湿法焊接电弧等离子体温度及其组分研究[D]. 南昌: 华东交通大学, 2020.
Xu Xiang. Research on the temperature and composition of underwater wet welding arc plasma [D]. Nanchang: East China Jiaotong University, 2020.
|
Stranathan J D. Dielectric constant of water vapor[J]. Physical Review, 1935, 48(6): 538 − 544. doi: 10.1103/PhysRev.48.538
|
李志刚, 祝林, 黄卫, 等. 水下湿法药芯焊丝焊接气泡动态演变与其声脉冲分析[J]. 焊接学报, 2021, 42(4): 36 − 41. doi: 10.12073/j.hjxb.20200517001
Li Zhigang, Zhu Lin, Huang Wei, et al. Dynamic evolution of bubbles and analysis of acoustic pulses in underwater wet flux cored wire welding[J]. Transactions of the China Welding Institution, 2021, 42(4): 36 − 41. doi: 10.12073/j.hjxb.20200517001
|
Zhao B, Chen J, Wu C, et al. Numerical simulation of bubble and arc dynamics during underwater wet flux-cored arc welding[J]. Journal of Manufacturing Processes, 2020, 59: 167 − 185. doi: 10.1016/j.jmapro.2020.09.054
|
邢长健. 水下湿法药芯焊丝焊接熔滴过渡过程的数值模拟[D]. 济南: 山东大学, 2019.
Xing Changjian. Numerical simulation of droplet transfer process in underwater wet flux cored wire welding [D]. Jinan: Shandong University, 2019.
|
Pancheshnyi S. 等离子数据交换库[DB/OL]. https://fr.lxcat.net/data/set_type.php, 2020-01-10.
|
Dermott E, Cullen J H, Hubbell L K. 光子和电子相互作用数据库[DB/OL]. https://www-nds.iaea.org/epdl97/, 2020-04-03.
|
李志刚, 刘德俊, 张世帅, 等. 不同水深下水下湿法焊接电弧引弧温度计算[J]. 光谱学与光谱分析, 2021, 41(5): 1586 − 1592.
Li Zhigang, Liu Dejun, Zhang Shishuai, et al. Calculation of arc starting temperature of underwater wet welding arc in different water depths[J]. Spectroscopy and Spectral Analysis, 2021, 41(5): 1586 − 1592.
|
王军毅, 施芸城. 大气压下Ar/CF_4纳秒脉冲放电等离子体特性[J]. 东华大学学报(自然科学版), 2021, 47(2): 125 − 130. doi: 10.19886/j.cnki.dhdz.2019.0395
Wang Junyi, Shi Yuncheng. Characteristics of Ar/CF_4 nanosecond pulsed discharge plasma at atmospheric pressure[J]. Journal of Donghua University (Natural Science Edition), 2021, 47(2): 125 − 130. doi: 10.19886/j.cnki.dhdz.2019.0395
|
Venger R, Tmenova T, Valensi F, et al. Detailed investigation of the electric discharge plasma between copper electrodes immersed into water[J]. Atoms, 2017, 5(4): 40 − 53. doi: 10.3390/atoms5040040
|
Yang L, Tan X, Wan X, et al. Stark broadening for diagnostics of the electron density in non-equilibrium plasma utilizing isotope hydrogen alpha lines[J]. Journal of Applied Physics, 2014, 115(16): 163106. doi: 10.1063/1.4873960
|
石里男. 焊接电弧引燃过程的机理分析[D]. 北京: 北京工业大学, 2011.
Shi Linan. Mechanism analysis of welding arc ignition process [D]. Beijing: Beijing University of Technology, 2011.
|
1. |
刘伟,张鑫,李素丽,李小龙. 基于焦耳热增材制造过程的温度场分析研究. 焊接技术. 2023(10): 1-4 .
![]() | |
2. |
张鑫,刘伟,张伟博,李小龙. 金属3D打印焦耳热最大变形量数值分析. 焊接技术. 2023(11): 1-5 .
![]() |