Advanced Search
WANG Ziran, MIAO Yugang, WANG Lin, MA Xubo, WEI Chao, ZHANG Benshun. Numerical analysis and mechanism investigation of the bypass-current plasma-MIG hybrid arc and the molten pool[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(8): 1-6, 13. DOI: 10.12073/j.hjxb.20220909004
Citation: WANG Ziran, MIAO Yugang, WANG Lin, MA Xubo, WEI Chao, ZHANG Benshun. Numerical analysis and mechanism investigation of the bypass-current plasma-MIG hybrid arc and the molten pool[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(8): 1-6, 13. DOI: 10.12073/j.hjxb.20220909004

Numerical analysis and mechanism investigation of the bypass-current plasma-MIG hybrid arc and the molten pool

More Information
  • Received Date: September 08, 2022
  • Available Online: June 19, 2023
  • The bypass-current plasma-MIG hybrid welding is a new process by coaxial coupling of the shunt arc achieved between the conductive copper nozzle of the plasma torch and the welding wire and the main arc between the wire and the base material. This process not only maintains the high efficiency of MIG welding but also provides more schemes for precise control of the welding process energy through the regulation of the bypass current. In order to understand the physical mechanism of action of the hybrid arc and the molten pool under this process, a hydrodynamic transient model was developed and verified with a reasonable experiment to compare the heat and mass transfer behavior inside the gas and liquid phases, and at the interface between them before and after the bypass-current loading. The results show that the maximum temperature of the arc decreases by about 1 000 K compared to that without the bypass current, and the effective heat flux at the interface of the hybrid arc and the molten pool decreases overall; the liquid metal flow rate inside the molten pool decreases significantly, and thus leading to a decrease in both dimensions of the penetration and the width; the maximum electromagnetic force direction of the hybrid arc and the molten pool remains unchanged, but the values are reduced.
  • Zhang Zhihao, Wu Dongting, Zou Yong. Effect of bypass coupling on droplet transfer in twin-wire indirect arc welding[J]. Journal of Materials Processing Technology, 2018(262): 123 − 130.
    Li Yan, Wang Ling, Wu Chuansong. A novel unified model of keyhole plasma arc welding[J]. International Journal of Heat and Mass Transfer, 2019(133): 885 − 894.
    Li Kehan, Zhang Yuming. Interval model control of consumable double-electrode gas metal arc welding process[J]. IEEE Tautom Scieng, 2010(7): 826 − 839.
    Bai Yan, Gao Hongming, Qiu Lin. Droplet transition for plasma-MIG welding on aluminium alloys[J]. Transactions of Nonferrous Metals Society of China, 2010(20): 2234 − 2239.
    Yang Tao, Xiong Jun, Chen Hui. Effect of process parameters on tensile strength in plasma-MIG hybrid welding for 2219 aluminum alloy[J]. International Journal of Advanced Manufacturing Technology, 2016(84): 2413 − 2421.
    Yang Tao, Chen Long, Zhuang Yuan, et al. Arcs interaction mechanism in plasma-MIG hybrid welding of 2219 aluminium alloy[J]. Journal of Manufacturing Processes, 2020(56): 635 − 642.
    Miao Yugang, Wang Ziran, Liu Ji, et al. Bypass-current plasma arc welding of aluminum alloy: thermal behavior, residual stress, and distortion[J]. International Journal of Advanced Manufacturing Technology, 2022(119): 5365 − 5376.
    Zhang Y M, Jiang M, Lu W. Double electrodes improve GMAW heat input control[J]. Welding Journal, 2004(83): 39 − 41.
    Huang Jiankang, Liu Shen, Yu Shurong, et al. Cladding Inconel 625 on cast iron via bypass coupling micro-plasma arc welding[J]. Journal of Manufacturing Processes, 2020(56): 106 − 115.
    Hu Gangxu, Yang Xingya, Yu Xingbin, et al. Investigation on automated loading of dynamic 3D heat source model for welding simulation[J]. China Welding, 2022, 31(3): 48 − 52.
    雷正, 朱宗涛, 李远星, 等. 空心钨极TIG焊电弧特性数值模拟[J]. 焊接学报, 2021, 42(9): 9 − 14.

    Lei Zheng, Zhu Zongtao, Li Yuanxing, et al. Numerical simulation of TIG arc characteristics of hollow tungsten electrode[J]. Transactions of the China Welding Institution, 2021, 42(9): 9 − 14.
    Wu Dongsheng, Tashiro Shinichi, Hua Xueming, et al. Analysis of the energy propagation in the keyhole plasma arc welding using a novel fully coupled plasma arc-keyhole-weld pool model[J]. International Journal of Heat and Mass Transfer, 2019(141): 604 − 614.
    Wu Dongsheng, Hua Xueming, Li Fang, et al. Understanding of spatter formation in fiber laser welding of 5083 aluminum alloy[J]. International Journal of Heat and Mass Transfer, 2017(113): 730 − 740.
    Ding Xueping, Li Huan, Wei Huiliang et al. Numerical analysis of arc plasma behavior in double-wire GMAW[J]. Vacuum, 2016(124): 46 − 54.
    石玗, 陈作雁, 薛诚, 等. 双旁路耦合电弧铝合金MIG焊熔滴过渡形态研究[J]. 机械工程学报, 2010, 46(20): 77 − 79.

    Shi Yu, Chen Zuoyan, Xue Cheng, et al. Research on metal transfer in dual bypass MIG welding of aluminum[J]. Journal of Mechanical Engineering, 2010, 46(20): 77 − 79.
  • Cited by

    Periodical cited type(4)

    1. 张建,李涛,林红霞,杨东青,方辉,范霁康,王克鸿. 焊丝成分对高氮钢CMT+P焊工艺性的影响. 兵工学报. 2023(03): 792-798 .
    2. 朱建,王宏宇,史东辉,黄金雷,毛计洲. 增材制造记忆合金的元素烧损行为及其补损分析. 焊接学报. 2022(09): 50-55+115-116 . 本站查看
    3. 席敏敏,李中祥,黄胜,田磊,王强强,姜帆,赵西岐. SUS304/Q235B双金属冶金复合螺旋管激光-CMT复合焊+埋弧焊接头组织及性能. 焊接. 2022(12): 6-12 .
    4. 汤泉,石志新,毛志伟. 基于多阈值与神经网络的旋转电弧图像飞溅分析. 焊接学报. 2022(12): 41-46+115 . 本站查看

    Other cited types(3)

Catalog

    Article views (326) PDF downloads (112) Cited by(7)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return