Citation: | MIAO Yugang, LIU Ji, LI Xiaoxu, ZHAO Yuyang, WANG Ziran, ZHANG Benshun. Microstructure and mechanical properties of NAB/steel composite structures by additive manufacturing with BC-MIG wire arc[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(7): 56-62. DOI: 10.12073/j.hjxb.20220824002 |
Tomar B, Shiva S, Nath T. A review on wire arc additive manufacturing: Processing parameters, defects, quality improvement and recent advances[J]. Materials Today Communications, 2022, 31: 103739. doi: 10.1016/j.mtcomm.2022.103739
|
Liu L, Zhuang Z, Fei L. Additive manufacturing of steel-bronze bimetal by shaped metal deposition: interface characteristics and tensile properties[J]. The International Journal of Advanced Manufacturing Technology, 2013, 69(9-12): 2131 − 2137. doi: 10.1007/s00170-013-5191-7
|
花雷生. 镍铝青铜堆焊工艺及堆焊层组织与性能研究 [D]. 西安: 西安理工大学, 2015.
Hua Leisheng. Nickel-aluminum bronze overlay process and microstructure and properties of overlayer[D]. Xi'an: Xi'an University of Technology, 2015.
|
吕玉廷, 王立强, 毛建伟, 等. 镍铝青铜合金(NAB)的研究进展[J]. 稀有金属材料与工程, 2016, 45(3): 815 − 820.
Lyu Yuting, Wang Liqiang, Mao Jianwei, et al. Recent advances of nickel-aluminum bronze (NAB)[J]. Rare Metal Materials and Engineering, 2016, 45(3): 815 − 820.
|
阎楚良, 王志, 张鑫, 等. 淡水介质环境的25号钢疲劳性能试验研究[J]. 农业机械学报, 2002(5): 89 − 92. doi: 10.3969/j.issn.1000-1298.2002.05.028
Yan Chuliang, Wang Zhi, Zhang Xin, et al. Study on fatigue performance test for 25 steel in fresh water[J]. Journal of Agricultural Machinery, 2002(5): 89 − 92. doi: 10.3969/j.issn.1000-1298.2002.05.028
|
徐杨. 碳钢表面堆焊铝青铜组织性能研究 [D]. 镇江: 江苏科技大学, 2021.
Xu Yang. Research on microstructure and properties of aluminum bronze surfacing on carbon steel[D]. Zhenjiang: Jiangsu University of Science and Technology, 2021.
|
Tian Y B, Shen J Q, Hu S S, et al. Effects of cold metal transfer mode on the reaction layer of wire and arc additive-manufactured Ti-6Al-4V/Al-6.25Cu dissimilar alloys[J]. Journal of Materials Science & Technology, 2021, 74: 35 − 45.
|
Zhang X C, Sun C, Pan T, et al. Additive manufacturing of copper – H13 tool steel bi-metallic structures via Ni-based multi-interlayer[J]. Additive Manufacturing, 2020, 36: 101474. doi: 10.1016/j.addma.2020.101474
|
Rodrigues T A, Bairrão N, Farias F, et al. Steel-copper functionally graded material produced by twin-wire and arc additive manufacturing (T-WAAM)[J]. Materials & Design, 2022, 213: 110270.
|
Chen S, Huang J, Xia J, et al. Microstructural characteristics of a stainless steel/copper dissimilar joint made by laser welding[J]. Metallurgical and Materials Transactions A, 2013, 44(8): 3690 − 3696.
|
黄本生, 陈权, 杨江, 等. Q345/316L异种钢焊接残余应力与变形数值模拟[J]. 焊接学报, 2019, 40(2): 138 − 144.
Huang Bensheng, Chen Quan, Yang Jiang, et al. Numerical simulation of welding residual stress and deformation in Q345/316L dissimilar steel welding[J]. Transactions of the China Welding Institution, 2019, 40(2): 138 − 144.
|
Jiang C, Long W M, Feng J, et al. Thermal fatigue behavior of copper/stainless steel explosive welding joint[J]. China Welding, 2021, 30(4): 25 − 29.
|
Tong Z P, Ren X D, Jiao J F, et al. Laser additive manufacturing of FeCrCoMnNi high-entropy alloy: Effect of heat treatment on microstructure, residual stress and mechanical property[J]. Journal of Alloys and Compounds, 2019, 785: 1144 − 1159. doi: 10.1016/j.jallcom.2019.01.213
|
1. |
刘缙,王克鸿,徐程,刘晨雨,彭勇. 电弧增材镍铝青铜的组织与性能. 焊接学报. 2024(08): 103-109 .
![]() | |
2. |
马景平,曹睿,周鑫. 高强钢焊接接头疲劳寿命的提高方法进展. 焊接学报. 2024(10): 115-128 .
![]() |