Advanced Search
WU Xiaoyan, LIN Hongtao, WANG Yisong, JIANG Haitao. The microstructure evolution in nugget zone of Q&P980 steel joints under the condition of friction stir welding thermal-mechanical couple effects[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(6): 120-128. DOI: 10.12073/j.hjxb.20220713001
Citation: WU Xiaoyan, LIN Hongtao, WANG Yisong, JIANG Haitao. The microstructure evolution in nugget zone of Q&P980 steel joints under the condition of friction stir welding thermal-mechanical couple effects[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(6): 120-128. DOI: 10.12073/j.hjxb.20220713001

The microstructure evolution in nugget zone of Q&P980 steel joints under the condition of friction stir welding thermal-mechanical couple effects

More Information
  • Received Date: July 12, 2022
  • Available Online: April 20, 2023
  • The friction stir welding technique was used to weld the Q&P980 steel and the microstructure evolution in the nugget zone was investigated under the conditions of high temperature and severe plastic deformation. The results indicated that, the microstructure was determined by the synthetic effects of peak temperature, the severe plastic deformation and cooling rate. The peak temperature was proportional to the rotation speed. The higher the rotation speed, the higher the peak temperature. The cooling rate was determined by the welding speed. The higher the welding speed, the higher cooling rate and thus, the effect of plastic deformation was not obvious. When the rotation speed kept at the level of 400 r/min, the microstructure evolution was from mixed microstructure of martensite/ferrite/retained austenite and finally evolved into martensite with the welding speed from 50 mm/min to 400 mm/min. The grain size was coarsened correspondingly. When the welding speed was 100 mm/min, the microstructure evolution sequence was changed from martensite/ferrite/retained austesite to matensite, then changed into martensite/bainite. And the grain size was fined correspondingly.
  • Wu Xiaoyan, Lin Hongtao, Wang Yisong, et al. Hydrogen embrittlement and fracture mechanism of friction stir welded quenching and partitioning 980 steel[J]. Materials Science & Engineering A, 2021(802): 140683.
    Nanda T, Singh V, Singh V, et al. Third generation of advanced high strength steels: Processing routes and properties[J]. Proceedings of the Institution of Mechanical Engineers Part L-Journal of Materials S-Design and Applic, 2019, 233(2): 209 − 238.
    蔺宏涛, 孟强, 王怡嵩, 等. 旋转速度对高强度钢Q&P980搅拌摩擦焊接头组织与性能的影响[J]. 材料导报, 2020, 34(3): 6126 − 6130.

    Lin Hongtao, Meng Qiang, Wang Yisong, et al. Effect of rotation speed on the microstructure and mechanical properties of friction stir welding of joint high strength steel Q&P 980[J]. Materials Reports, 2020, 34(3): 6126 − 6130.
    蔺宏涛, 江海涛, 王怡嵩, 等. 6016-T4铝合金与镀锌IF钢搅拌摩擦焊接头的组织与性能[J]. 材料导报, 2019, 33(5): 1443 − 1447. doi: 10.11896/cldb.18040291

    Lin Hongtao, Jiang Haitao, Wang Yisong, et al. Microstructures and mechanical properties of joints of 6016-T4 aluminum alloy/Galvanied IF steel by friction stir welding[J]. Materials Reports, 2019, 33(5): 1443 − 1447. doi: 10.11896/cldb.18040291
    Ghosh M, Kumar K, Mishra R S. Analysis of microstructural evolution during friction stir welding of ultrahigh strength steel[J]. Scripta Materialia, 2010, 63(8): 851 − 854. doi: 10.1016/j.scriptamat.2010.06.032
    Kim Y G, Kim J S, Kim I J. Effect of process parameters on optimum welding condition of DP590 steel by friction stir welding[J]. Journal of Materials Science & Technology, 2014, 28(12): 5143 − 5148.
    Da C P H C P, Braga L G V, Luciano B, et al. Effect of welding speed on friction stir welds of GL E36 shipbuilding steel[J]. Journal of Materials Research and Technology, 2019, 8(1): 1041 − 1051. doi: 10.1016/j.jmrt.2018.07.014
    薛鹏, 张星星, 吴利辉, 等. 搅拌摩擦焊接与加工研究进展[J]. 金属学报, 2016, 52(10): 1222 − 1238. doi: 10.11900/0412.1961.2016.00346

    Xue Peng, Zhang Xingxing, Wu Lihui, et al. Research progress on friction stir welding and processing[J]. Acta Metallurgica Sinica, 2016, 52(10): 1222 − 1238. doi: 10.11900/0412.1961.2016.00346
    Meshram S D, Paradkar A G, Reddy G M, et al. Friction stir welding: An alternative to fusion welding for better stress corrosion cracking resistance of maraging steel[J]. Journal of Manufacturing Processes, 2017, 25(1.): 94 − 103.
    Miles M P, Nelson T W, Steel R, et al. Effect of friction stir welding conditions on properties and microstructures of high strength automotive steel[J]. Science and Technology of Welding and Joining, 2013, 14(3): 228 − 232.
    Sato Y S, Yamanoi H, Kokawa H, et al. Microstructural evolution of ultrahigh carbon steel during friction stir welding[J]. Scripta Materialia, 2007, 57(6): 557 − 560. doi: 10.1016/j.scriptamat.2007.04.050
    Cui L, Fujii H, Tsuji N, et al. Friction stir welding of a high carbon steel[J]. Scripta Materialia, 2007, 56(7): 637 − 640. doi: 10.1016/j.scriptamat.2006.12.004
    Khodir S A, Morisada Y, Ueji R, et al. Microstructures and mechanical properties evolution during friction stir welding of SK4 high carbon steel alloy[J]. Materials Science & Engineering A, 2012, 558: 572 − 578. doi: 10.1016/j.msea.2012.08.052
    Nelson T W, Rose S A. Controlling hard zone formation in friction stir processed HSLA steel[J]. Journal of Materials Process and Technology, 2016, 231(3): 66 − 7.
    武晓燕, 罗巍, 王怡嵩, 等. 基于CEL模型的搅拌摩擦焊接7055铝合金仿真模拟[J]. 焊接学报, 2021, 42(7): 44 − 101.

    Wu Xiaoyan, Luo Wei, Wang Yisong, et al. Simulation on friction stir welding 7055 aluminum alloy based on CEL model[J]. Transactions of the China Welding Insititution, 2021, 42(7): 44 − 101.
    Barnes S J, Bhatti A R, Steuwer A, et al. Friction stir welding in HSLA-65 steel: Part I. Influence of weld speed and tool material on microstructural development[J]. Materials Science and Engineering A, 43(7): 2342-2355.
    Hodgson P D, Hickson M R, Gibbs R K. Ultrafine ferrite in low carbon steel[J]. Scripta Materialia, 1999, 40(10): 1179 − 1184. doi: 10.1016/S1359-6462(98)00411-4
    Hong S C, Lee K S. Influence of deformation induced ferrite transformation on grain refinement of dual phase steel[J]. Materials Science & Engineering A, 2002, 323(1): 148 − 159.
    Arbegast W J. A flow-partitioned deformation zone model for defect formation during friction stir welding[J]. Scripta Materialia, 2008, 58(5): 372 − 376. doi: 10.1016/j.scriptamat.2007.10.031
    Farrar R A, Zhang Z, Bannister S R, et al. The effect of prior austenite grain size on the transformation behaviour of C-Mn-Ni weld metal[J]. Journal of Materials Science, 1993, 28(5): 1385 − 1390. doi: 10.1007/BF01191982
    Mishra R S, Ma Z Y. Friction stir welding and processing II[J]. Materials Science and Engineering R, 2005, 50(1): 1 − 78.
    Xie G M, Cui H B, Luo Z A, et al. Effect of rotation rate on microstructure and mechanical properties of friction stir spot welded DP780 steel[J]. Journal of Materials Science & Technology, 2016, 32(4): 326 − 332.
    Imam M, Ueji R, Fujii H. Microstructural control and mechanical properties in friction stir welding of medium carbon low alloy S45C steel[J]. Materials Science & Engineering A, 2015, 636: 24 − 34. doi: 10.1016/j.msea.2015.03.089
    Xie G M, Cui H B, Luo Z A, et al. Effect of rotation rate on microstructure and mechanical properties of friction stir spot welded DP780 steel[J]. Journal of Materials Science and Technology, 2016, 32(4): 326 − 332.
    Hong S C, Lee K S. Influence of deformation induced ferrite transformation on grain refinement of dual phase steel[J]. Materials Science and Engineering A, 2002, 323(1): 148 − 159.
  • Related Articles

    [1]XU Zhiwu, LI Zhengwei, FENG Yan, YAN Jiuchun. Microstructure and mechanical properties of Mg/Al friction stir lap welding joint assisted by stationary shoulder[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2017, 38(4): 1-6. DOI: 10.12073/j.hjxb.20170401
    [2]MAO Yuqing, KE Liming, HUANG Bin, LIU Fencheng. Effect of shoulder profile on plastic flow of weld metal in aluminum alloys friction stir welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2017, 38(3): 27-32.
    [3]MAO Yuqing, KE Liming, LIU Fencheng, LIU Qiang. Effect of pin eccentricity on flow behavior of plastic material in friction stir welds[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2017, 38(2): 51-56.
    [4]WANG Weibing, LUAN Guohong, ZHANG Kun, ZHAO Huaxia. Fundamental model of plastic material flow in FSW[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(12): 71-74.
    [5]WANG Xijing, XU Youwei, ZHANG Liangliang, WEI Wankui. Plastic metal flow characteristic and fracture behaviors of DP600/AZ31 with non-keyhole friction stir spot welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(12): 57-60,70.
    [6]JI Shude, MENG Qingguo, SHI Qingyu, ZHANG Liguo, ZOU Aili. Numerical simulation of metal plastic flow in friction stir welding affected by pin shape[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2013, (2): 93-96.
    [7]YU Yong-zheng, LUO Yu, LUAN Guo-hong, SUN Cheng-bin. Metal flow behavier in friction stir welding of LF6 aluminum alloy and LD10 aluminum alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2004, (6): 115-118.
    [8]YU Yong-zheng, LUO Yu, LUAN Guo-hong. Factors affecting on metal plastic flow during friction stir welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2004, (5): 117-120.
    [9]ZHANG Hua, LIN San bao, WU Lin, FENG Ji cai, LUAN Guo hong. Current progress and prospect of friction stir welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2003, (3): 91-96.
    [10]Du Suigeng, Liu Xiaowen, Wu Shichun, Li Xiaoxia. Plastic Flow Equation of Weld Metal during Quasi-steady Friction Stage[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1999, (4): 219-224.

Catalog

    Article views (255) PDF downloads (49) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return