Advanced Search
LI Yong, TONG Haodong, GAO Hui, ZHOU Canfeng. Study on behavior and process of plasma arc in high pressure environment[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(6): 82-89. DOI: 10.12073/j.hjxb.20220712002
Citation: LI Yong, TONG Haodong, GAO Hui, ZHOU Canfeng. Study on behavior and process of plasma arc in high pressure environment[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(6): 82-89. DOI: 10.12073/j.hjxb.20220712002

Study on behavior and process of plasma arc in high pressure environment

More Information
  • Received Date: July 11, 2022
  • Available Online: April 14, 2023
  • Plasma arc cutting technology is widely used in industrial fields because of its efficient and stable process advantages. Taking the air plasma arc as the research object, this paper establishes a two-dimensional axisymmetric finite element mathematical model of the nozzle structure through COMSOL multiphysics software, and optimizes the arc magnetic fluid model. Based on magnetohydrodynamics and arc plasma theory, the multi physical field interface of plasma equilibrium discharge is selected, and the control equations and boundary conditions of air plasma arc model are established to realize the compilation and solution of the arc model. The simulation results show that under the condition of consistent arc starting current, the arc shrinks in temperature distribution and velocity distribution with the increase of ambient pressure. Based on the 3 MPa high-pressure welding test chamber, an experimental system of plasma arc cutting in high-pressure environment is built. Through the optimization design of gas circuit and non high-frequency arc starting circuit, the stable arc starting with environmental pressure of 0.1 ~ 0.7 MPa is realized. Based on this, plasma arc cutting experiments under high pressure gradient were carried out, and the influence of environmental pressure on plasma arc ionization behavior was studied combined with cutting quality index.
  • 胡义勇, 吴波, 顾先凯, 等. 浅谈等离子弧切割在管道开孔中应用[J]. 中国石油和化工标准与质量, 2021, 41(15): 118 − 119. doi: 10.3969/j.issn.1673-4076.2021.15.055

    Hu Yiyong, Wu Bo, Gu Xiankai, et al. Discussion on the application of plasma arc cutting in pipe opening[J]. China Petroleum and Chemical Industry Standards and Quality, 2021, 41(15): 118 − 119. doi: 10.3969/j.issn.1673-4076.2021.15.055
    胡义勇, 李夏喜, 李松, 等. 带压燃气环境下等离子弧切割技术可行性研究[J]. 煤气与热力, 2019, 39(5): 37 − 39. doi: 10.13608/j.cnki.1000-4416.2019.05.020

    Hu Yiyong, Li Xiaxi, Li Song, et al. Feasibility study on plasma arc cutting technology in pressurized gas environment[J]. Gas and Heat, 2019, 39(5): 37 − 39. doi: 10.13608/j.cnki.1000-4416.2019.05.020
    陈月峰, 严得忠, 程定富, 等. 国内数控等离子弧切割技术的发展与应用[J]. 焊接技术, 2017, 46(8): 1 − 4. doi: 10.13846/j.cnki.cn12-1070/tg.2017.08.001

    Chen Yuefeng, Yan Dezhong, Cheng Dingfu, et al. Development and application of CNC plasma arc cutting technology in China[J]. Welding Technology, 2017, 46(8): 1 − 4. doi: 10.13846/j.cnki.cn12-1070/tg.2017.08.001
    陈传杰, 孔维宾, 方忠庆, 等. 基于电磁模型的大气压表面波等离子体数值模拟[J]. 电子科技大学学报, 2022, 51(2): 305 − 313. doi: 10.12178/1001-0548.2021238

    Chen Chuanjie, Kong Weibin, Fang Zhongqing, et al. Numerical simulation of atmospheric pressure surface wave plasma based on electromagnetic model[J]. Journal of University of Electronic Science and technology, 2022, 51(2): 305 − 313. doi: 10.12178/1001-0548.2021238
    张达, 叶凯, 唐政刚, 等. 等离子体冶金的现状与发展[J]. 中国有色金属学报, 2021, 31(7): 1907 − 1921. doi: 10.11817/j.ysxb.1004.0609.2021-37834

    Zhang Da, Ye Kai, Tang Zhenggang, et al. Current situation and development of plasma metallurgy[J]. Chinese Journal of Nonferrous Metals, 2021, 31(7): 1907 − 1921. doi: 10.11817/j.ysxb.1004.0609.2021-37834
    刘吉宇, 张帆, 陈阳, 等. 低温等离子体辅助加工综述[J]. 航空学报, 2021, 42(10): 74 − 86.

    Liu Jiyu, Zhang Fan, Chen Yang, et al. Overview of low temperature plasma assisted machining[J]. Acta Aeronautica Sinica, 2021, 42(10): 74 − 86.
    Matus Gajdos, Tomas Kristofic, Slavomir Jankovic, et al. Use of plasma-based tool for plug and abandonment[C]. Aberdeen, Scotland, UK: SPE Offshore Europe Conference and Exhibition, 2015.
    陈林柯. 环境压力对等离子切割电弧的影响研究[D]. 北京: 北京石油化工学院, 2019.

    Chen Linke. Study on the influence of ambient pressure on plasma cutting arc [D]. Beijing: Beijing Institute of Petrochemical Technology, 2019.
    谷孝满, 黄松涛, 焦向东, 等. 高气压环境下脉冲MIG焊频率优化改善电弧稳定性的研究[J]. 电焊机, 2015, 45(3): 69 − 74.

    Gu Xiaoman, Huang Songtao, Jiao Xiangdong, et al. Research on improving arc stability by optimizing the frequency of pulsed MIG welding in high pressure environment[J]. Electric Welding Machine, 2015, 45(3): 69 − 74.
    胡辉, 杨旗, 包斌, 等. 基于ANSYS的空气电弧放电等离子体温度数值模拟[J]. 电工电能新技术, 2009, 28(2): 20 − 23. doi: 10.3969/j.issn.1003-3076.2009.02.005

    Hu Hui, Yang Qi, Bao bin, et al. Numerical simulation of plasma temperature in air arc discharge based on ANSYS[J]. New Technology of Electrical Energy, 2009, 28(2): 20 − 23. doi: 10.3969/j.issn.1003-3076.2009.02.005
    Baimbetov F B, Giniyatova S G. Interparticle interaction and transport processes in dense semiclassical plasmas[J]. Physics of Plasmas, 2005, 12(4): 1 − 4.
    Herrebout D, Bogaerts A, Yan M, et al. Modeling of a capacitively coupled radio-frequency methane plasma: Comparison between a one-dimensional and two-dimensional fluid model[J]. Journal of Applied Physics, 2002, 92(5): 2290 − 2295. doi: 10.1063/1.1500789
    Annemie Bogaerts, Luís L Alves. Special issue on numerical modelling of low-temperature plasmas for various applications — part II: Research papers on numerical modelling for various plasma applications[J]. Plasma Processes and Polymers, 2017, 14(4-5).
    王路明, 高辉, 周灿丰, 等. 高压环境等离子切割电弧数值模拟[J]. 焊接, 2021(5): 15 − 19.

    Wang Luming, Gao Hui, Zhou Canfeng, et al. Numerical simulation of plasma cutting arc in high pressure environment[J]. Welding & Joining, 2021(5): 15 − 19.
    Rong M, Li M, Wu Y, et al. 3-D MHD modeling ofinternal fault arc in a closed container[J]. IEEE Transactions on Power Delivery, 2017, 32(3): 1220 − 1227. doi: 10.1109/TPWRD.2014.2375891
    向凌峰. 基于磁流体力学模型的稳态真空电弧建模与仿真[D]. 武汉: 华中科技大学, 2019.

    Xiang Lingfeng. Modeling and simulation of steady-state vacuum arc based on MHD model [D]. Wuhan: Huazhong University of Science and Technology, 2019.
    李国明. 真空断路器开断过程中电弧等离子体的特性研究[D]. 北京: 华北电力大学, 2019.

    Li Guoming. Study on the characteristics of arc plasma during the breaking process of vacuum circuit breaker [D]. Beijing: North China Electric Power University, 2019.
    李天庆, 陈璐, 张宇, 等. 气流再压缩等离子弧焊接电弧行为[J]. 焊接学报, 2020, 41(5): 50 − 55. doi: 10.12073/j.hjxb.20191125002

    Li Tianqing, Chen Lu, Zhang Yu, et al. Arc behavior of gas flow recompression plasma arc welding[J]. Transactions of The China Welding Institution, 2020, 41(5): 50 − 55. doi: 10.12073/j.hjxb.20191125002
    李正农, 李炜, 张学文. 应用等离子体激励抑制风力机叶片噪声的数值仿真研究[J]. 太阳能学报, 2021, 42(12): 220 − 229. doi: 10.19912/j.0254-0096.tynxb.2020-0001

    Li Zhengnong, Li Wei, Zhang Xuewen. Numerical simulation study on suppression of wind turbine blade noise by plasma excitation[J]. Journal of Solar Energy, 2021, 42(12): 220 − 229. doi: 10.19912/j.0254-0096.tynxb.2020-0001
    李岩, 王领, 张冀翔, 等. 基于电弧-熔池耦合的小孔型等离子弧焊接简化模型[J]. 机械工程学报, 2021, 57(18): 144 − 152. doi: 10.3901/JME.2021.18.144

    Li Yan, Wang Ling, Zhang Jixiang, et al. A simplified model of small hole plasma arc welding based on arc pool coupling[J]. Journal of Mechanical Engineering, 2021, 57(18): 144 − 152. doi: 10.3901/JME.2021.18.144
    佟浩东. 高压环境等离子弧电离行为及其切割工艺研究[D]. 北京: 北京石油化工学院, 2022.

    Tong Haodong. Research on plasma arc ionization behavior and cutting technology in high pressure environment [D]. Beijing: Beijing Institute of Petrochemical Technology, 2022.
    孟宪宇. Nb-Ti-Si合金等离子—感应复合熔炼数值模拟与实验研究[D]. 哈尔滨: 哈尔滨工业大学, 2019.

    Meng Xianyu. Numerical simulation and experimental study on plasma induction composite melting of Nb-Ti-Si alloy [D]. Harbi: Harbin Institute of Technology, 2019.
    李子晗, 忻建文, 肖笑, 等. 热导型等离子弧焊电弧物理特性和熔池动态行为[J]. 金属学报, 2021, 57(5): 693 − 702.

    Li Zihan, Xin Jianwen, Xiao Xiao, et al. Physical characteristics of thermal conductive plasma arc welding arc and dynamic behavior of molten pool[J]. Acta Metallurgica Sinica, 2021, 57(5): 693 − 702.
    郎瑞卿, 韩永全, 白雪宇, 等. 变极性频率对铝合金变极性等离子弧穿孔立焊熔池稳定性的影响机理(英文)[J]. 稀有金属材料与工程, 2022, 51(4): 1172 − 182.

    Lang Ruiqing, Han Yongquan, Bai Xueyu, et al. The mechanism of the influence of variable polarity frequency on the stability of aluminum alloy melt pool in variable polarity plasma arc piercing vertical welding[J]. Rare Metal Materials and Engineering, 2022, 51(4): 1172 − 182.
  • Related Articles

    [1]LIU Jinhao, LI Jiachen, ZHANG Liangliang, WU Baosheng, LI Peng, DONG Honggang. Microstructural evolution and corrosion property of Al-Mg alloy friction stir welding joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(10): 8-18. DOI: 10.12073/j.hjxb.20231011002
    [2]Fenggui LU, Dean DENG, Yaqi WANG, Chendong SHAO. Application and development of numerical simulation technology in laser welding process[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(8): 87-94. DOI: 10.12073/j.hjxb.20220430001
    [3]Rui MA, Linchuan LIU, Yajun WANG, Jie BAI, Caiwang TAN, Xiaoguo SONG. Effect of solution temperature on the microstructure evolution and mechanical properties of laser powder bed melting GH3536 alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(8): 73-79. DOI: 10.12073/j.hjxb.20220504002
    [4]YU Shurong, CHENG Nengdi, HUANG Jiankang, YU Xiaoquan, FAN Ding. Relationship between thermal process and microstructure during additive manufacturing of double-electrode gas metal arc welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(8): 1-6. DOI: 10.12073/j.hjxb.2019400200
    [5]LI Bingru, ZHOU Jianping, XU Yan, BAO Yang. Three-dimensional numerical simulation and analysis of temperature field in metal welding deposition prototyping[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(3): 42-46. DOI: 10.12073/j.hjxb.2018390065
    [6]WANG Xijing, WEI Xueling, ZHANG Liangliang. Microstructural evolution and mechanical properties of friction stir welded 6082-T6 aluminum alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(3): 1-5. DOI: 10.12073/j.hjxb.2018390057
    [7]CHENG Donghai, CHEN Long, CHEN Yiping, HU Dean. Microstructure evolution of electron beam welded 5A90 aluminum lithium alloy during superplastic deformation[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2017, 38(6): 29-32,36.
    [8]ZHANG Lei, LIU Changqing, YU Jingwei, HU Xihai, GONG Feng, JIN Guangri. Numerical analysis of microstructure evolution of coarse grained zone in sidewall during narrow gap submerged arc welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(4): 103-106.
    [9]CHENG Donghai, HUANG Jihua, CHEN Yiping, HU Dean. Microstructure evolution characterization of superplastic deformation of titanium alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2012, (7): 89-92.
    [10]MA Rui, DONG Zhibo, WEI Yanhong, ZHAN Xiaohong. Simulation of solidification microstructure evolution in molten pool of nickel base alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2010, (7): 43-46.
  • Cited by

    Periodical cited type(1)

    1. 王志鹏,朱明亮,轩福贞. CrMoV与NiCrMoV异种钢焊接接头的高周疲劳性能及寿命模型. 焊接学报. 2024(07): 67-73 . 本站查看

    Other cited types(0)

Catalog

    Article views (237) PDF downloads (57) Cited by(1)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return