Advanced Search
LIU Yong, LI Gangqing, WANG Shengxi, HAN Xiaohui, WANG Bo, YE Jiehe. Microstructure and properties of stainless steel sheet laser soldering joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(4): 45-49. DOI: 10.12073/j.hjxb.20220520001
Citation: LIU Yong, LI Gangqing, WANG Shengxi, HAN Xiaohui, WANG Bo, YE Jiehe. Microstructure and properties of stainless steel sheet laser soldering joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(4): 45-49. DOI: 10.12073/j.hjxb.20220520001

Microstructure and properties of stainless steel sheet laser soldering joint

More Information
  • Received Date: May 19, 2022
  • Available Online: April 03, 2023
  • Laser soldering was used to seal the lap joint of 304 stainless steel sheet, and the microstructure and shearing property of soldering joints were investigated. The results showed that with suitable laser beam tilt angle 60° and defocusing distance 300 mm, the laser heat input can be effectively reduced thus, ensuring a successful completion of laser soldering of 304 stainless steel sheet with a filling depth of 5 mm, and the appearance of the joint is smooth and full. The color of the joint is similar to that of the base metal, and no extra coating is needed.The laser soldering joint can be divided into three zones: stainless steel base metal zone, soldering seam zone and stainless steel base metal zone. The boundary between the soldering seam zone and the base metal zone is clear and distinct, and the microstructure of the joint is continuous without blowhole, crack or other defects. The microstructure of the soldering joint is mainly composed of black solid solution phase, big rhombic block white phase and short stick white phase. The joint consisted of α-Sn composite phase, SbSn phase and Cu6Sn5 phase. The diffusion layer of FeSn2 metal compound is formed between the filler metal and the base metal with a thickness of 1 − 2 μm. Test results show that the shearing property of joint is about 39 MPa, which can meet the requirement of overlap joint of 304 stainless steel sheet.
  • 张青科, 钟素娟, 张雷, 等. 奥氏体不锈钢−铜钎料钎焊界面反应行为分析[J]. 焊接学报, 2017, 38(3): 75 − 78.

    Zhang Qingke, Zhong Sujuan, Zhang Lei, et al. Investigation on interfacial reaction behavior of brazed joint of austenitic stainless steel/Cu filler metal[J]. Transactions of the China Welding Institution, 2017, 38(3): 75 − 78.
    吕学勤, 杨尚磊, 吴毅雄, 等. 铝合金与不锈钢的过渡层钎焊[J]. 焊接学报, 2004, 25(1): 95 − 98,102. doi: 10.3321/j.issn:0253-360X.2004.01.025

    Lyu Xueqin, Yang Shanglei, Wu Yixiong, et al. Transitional layers brazing of Al-alloy and stainless steel[J]. Transactions of the China Welding Institution, 2004, 25(1): 95 − 98,102. doi: 10.3321/j.issn:0253-360X.2004.01.025
    张志强, 荆洪阳, 徐连勇, 等. 双相不锈钢多层多道焊接接头微观组织表征[J]. 焊接学报, 2017, 38(5): 79 − 82. doi: 10.12073/j.hjxb.20170518

    Zhang Zhiqiang, Jing Hongyang, Xu Lianyong, et al. Microstruc tural characterization of duplex stainless steel multi-pass welded joint[J]. Transactions of the China Welding Institution, 2017, 38(5): 79 − 82. doi: 10.12073/j.hjxb.20170518
    孙志超, 桑健, 隋英杰, 等. 黄铜与304不锈钢的电阻软钎焊封装工艺[J]. 焊接学报, 2019, 40(5): 137 − 142. doi: 10.12073/j.hjxb.2019400141

    Sun Zhichao, Sang Jian, Sui Yingjie, et al. Study on brass and 304 stainless steel packaging process by resistance soldering[J]. Transactions of the China Welding Institution, 2019, 40(5): 137 − 142. doi: 10.12073/j.hjxb.2019400141
    Liu Jian, Shi Yan, Liu Jia, et al. Effect of shielding gas on laser welding of austenitic stainless steel[J]. Laser & optoelectronics Progress, 2014, 51(5): 051402.
    刘龙玺, 钟元木, 马传平, 等. 地铁用SUS301L奥氏体不锈钢激光焊接头残余应力研究[J]. 热加工工艺, 2013, 42(13): 186 − 188.

    Liu Longxi, Zhong Yuanmu, Ma Chuanping, et al. Research on laser welding joint residual stress of SUS301L austenitic stainless steel for subway[J]. Hot Working Technology, 2013, 42(13): 186 − 188.
    张维哲. 304不锈钢薄板激光焊接技术研究 [D]. 大连: 大连理工大学, 2009.

    Zhang Weizhe. Research on laser welding technology of 304 stainless steel sheet[D]. Dalian: Dalian University of Technology, 2009.
    Yang Rongtai, Chen Zhiwei. A Study on fiber laser lap welding of thin stainless steel[J]. International Journal of Precision Engineering and Manufacturing, 2013, 14(2): 207 − 214. doi: 10.1007/s12541-013-0029-7
    Moshayedi H, Sattari-Far I. Resistance spot welding and the effects of welding time and current on residual stresses[J]. Journal of Materials Processing Technology, 2014, 214(11): 2545 − 2552. doi: 10.1016/j.jmatprotec.2014.05.008
    苗刚, 张丹丹, 湛露, 等. 有机硅密封胶强度影响因素的研究[J]. 有机硅材料, 2018, 32(6): 474 − 477.

    Miao Gang, Zhang Dandan, Zhan Lu, et al. Research on the factors affecting the strength of silicone sealants[J]. Silicone Material, 2018, 32(6): 474 − 477.
    顾伟. SMA490BW耐候钢激光填丝焊熔滴过渡行为及接头组织性能研究 [D]. 镇江: 江苏科技大学, 2018.

    Gu Wei. Study on droplet transition behavior and joint microstructure properties of SMA490BW weathering steel laser wire fill welding[D]. Zhenjiang: Jiangsu University of Science and Technology, 2018.
    Jadlovsky J, Ilkovic J. Material flow modelling in mechatronic manufacturing system[J]. Procedia Engineering, 2013, 48(3): 345 − 358.
    Guo Wei, Cai Yan. Effect of laser remelting on microstructure and mechanical properties of CrMnFeCoNi high entropy alloy[J]. China Welding, 2021, 30(2): 1 − 10.
    Gao Fuyang, Mu Zhuangzhuang, Ma Zhaowei, et al. Fine microstructure characterization of titanium alloy laser narrow gap welded joint[J]. China Welding, 2021, 30(3): 31 − 38.
    李时春, 周振红, 莫彬, 等. 激光钎焊多层金刚石磨粒Ni-Cr合金成形工艺研究[J]. 中国机械工程, 2021, 32(8): 967 − 975. doi: 10.3969/j.issn.1004-132X.2021.08.011

    Li Shichun, Zhou Zhenhong, Mo Bin, et al. Research on the forming process of Ni-Cr alloy with multi-layer diamond abrasive grains by laser brazing[J]. China Mechanical Engineering, 2021, 32(8): 967 − 975. doi: 10.3969/j.issn.1004-132X.2021.08.011
    Lauto A, Kerman I, Ohebshalon M, et al. Two-layer film as a laser soldering biomaterial.[J]. Lasers in Surgery & Medicine, 2015, 25(3): 250 − 256.
    马凯. 激光钎焊条件下CuSi3钎料与镀锌钢板界面传质行为的研究 [D]. 上海: 上海工程技术大学, 2015.

    Ma Kai. Research of interface mass transfer behavior under the condition of laser brazing of Zinc-coated steel with CuSi3 filler metal[D]. Shanghai: Shanghai University of Engineering Science, 2015.
    李晋禹, 张明军, 胡永乐, 等. Ni-C合金钎料激光钎焊金刚石表面金属化[J]. 激光技术, 2020, 44(1): 26 − 31. doi: 10.7510/jgjs.issn.1001-3806.2020.01.005

    Li Jinyu, Zhang Mingjun, Hu Yongle, et al. Ni-C alloy brazing laser brazed diamond surface metallization[J]. Laser Technology, 2020, 44(1): 26 − 31. doi: 10.7510/jgjs.issn.1001-3806.2020.01.005
    于艳玲. 一种挤压成型的激光熔钎焊方法: 中国, CN201610435765.7 [P]. 2016-06-17.

    Yu Yanling. A kind of extrusion laser melt brazing method: China, CN201610435765.7[P]. 2016-06-17.
    Long Weimin, Liu Dashuang, Dong Xian, et al. Laser power effects on properties of laser brazing diamond coating[J]. Surface Engineering, 2020, 36(12): 1315 − 1326. doi: 10.1080/02670844.2020.1758292
    Long Weimin, Liu Dashuang, Wu Aiping, et al. Influence of laser scanning speed on the formation property of laser brazing diamond coating[J]. Diamond and Related Materials, 2020, 110: 108085. doi: 10.1016/j.diamond.2020.108085
    孙达, 俞向阳, 周殿宏, 等. Fe固-Sn液反应过程中FeSn2及FeSn生长动力学研究[J]. 有色金属材料与工程, 1992, 13(6): 1 − 5.

    Sun Da, Yu Xiangyang, Zhou Dianhong, et al. FeSn2 and FeSn growth kinetics during Fe solid-Sn liquid reaction[J]. Nonferrous Metal Materials and Engineering, 1992, 13(6): 1 − 5.
  • Cited by

    Periodical cited type(2)

    1. 于一强,张宝贵,杨琨,唐一峰,陈宗旭,张雪芹. 超薄不锈钢激光焊接工艺对接头力学性能的影响. 金属加工(热加工). 2025(03): 90-94 .
    2. 韩晓辉,刘桐,李刚卿,方喜风. 轨道客车连接技术难题及发展趋势. 电焊机. 2024(09): 1-13 .

    Other cited types(0)

Catalog

    Article views (267) PDF downloads (53) Cited by(2)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return