Advanced Search
LI Xuejiao, QIAN Jingye, BI Zhixiong, ZHANG Tingzhao, DAI Xiande, RONG Kai. Explosive welding and numerical simulation of T2/Q345 clad plate based on self-restraint structure explosive[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(3): 70-76. DOI: 10.12073/j.hjxb.20220419002
Citation: LI Xuejiao, QIAN Jingye, BI Zhixiong, ZHANG Tingzhao, DAI Xiande, RONG Kai. Explosive welding and numerical simulation of T2/Q345 clad plate based on self-restraint structure explosive[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(3): 70-76. DOI: 10.12073/j.hjxb.20220419002

Explosive welding and numerical simulation of T2/Q345 clad plate based on self-restraint structure explosive

More Information
  • Received Date: April 18, 2022
  • Available Online: February 08, 2023
  • In order to improve the energy utilization rate and reduce the energy dissipation, explosive welding was carried out with self-restraint structure explosive. T2 copper and Q345 steel were used as fly and base layers, respectively, and self-restraint structure explosive was adopted as welding explosive. The explosive welding process was simulated by ANSYS/AUTODYN code, and the copper/steel explosive welded clad plate was prepared. The welding quality was analyzed by mechanical property testing and microscopic morphology observation. The results show that self- restraint structure could reduce the dissipation of its own detonation products, which makes more explosive energy into kinetic energy of flyer layer and improves energy utilization rate. The collision velocity of copper/steel explosive welding is greater than the critical collision velocity of 345 m/s after detonation distance is greater than 100 mm away from the initiation end. The ultimate collision velocity at a detonation distance of 150 mm is 567 m/s. The initiation end of the copper/steel clad plate is of linear bonding, the bonding interface is transformed into wavy bonding as detonation distance increases. The shear strength of copper/steel clad plate is 237.0 MPa, and the fracture position is on the copper side. Copper layer existed work hardening after tension shear failure, and the farther measuring point from the interface is, the stronger the microhardness and plastic deformation is.
  • Jiang C, Long W M, Feng J, et al. Thermal fatigue behavior of copper/stainless steel explosive welding joint[J]. China Welding, 2021, 30(4): 25 − 29.
    毕志雄, 李雪交, 吴勇, 等. 钛箔/钢爆炸焊接的界面结合性能[J]. 焊接学报, 2022, 43(4): 81 − 85. doi: 10.12073/j.hjxb.20211105002

    Bi Zhixiong, Li Xuejiao, Wu Yong, et al. Interfacial bonding properties of titanium foil/steel explosive welding[J]. Transactions of the China Welding Institution, 2022, 43(4): 81 − 85. doi: 10.12073/j.hjxb.20211105002
    毕志雄, 李雪交, 吴勇, 等. 自约束结构装药下T2/Q345爆炸焊接研究[J]. 含能材料, 2021, 29(5): 394 − 398. doi: 10.11943/CJEM2021028

    Bi Zhixiong, Li Xuejiao, Wu Yong, et al. Study on explosion welding of T2/Q345 alloys with self-restraint explosive[J]. Chinese Journal of Energetic Materials, 2021, 29(5): 394 − 398. doi: 10.11943/CJEM2021028
    田启超, 马宏昊, 沈兆武, 等. Al0.1CoCrFeNi 高熵合金/TA2钛复合板爆炸焊接试验及性能测试[J]. 焊接学报, 2021, 42(6): 22 − 29.

    Tian Qichao, Ma Honghao, Shen Zhaowu, et al. Explosive welding and performance test of Al0.1CoCrFeNi high-entropy alloy/TA2 composite plate[J]. Transactions of the China Welding Institution, 2021, 42(6): 22 − 29.
    郑远谋. 爆炸焊接和爆炸复合材料[M]. 北京: 国防工业出版社, 2017.

    Zheng Yuanmou. Explosive welding and explosive composite material[M]. Beijing: Natianal Defense Industry Press, 2017.
    Lysak V L, Kuzmin S V. Energy balance during explosive welding[J]. Journal of Materials Processing Technology, 2015, 222: 356 − 364. doi: 10.1016/j.jmatprotec.2015.03.024
    Yang M, Ma H H, Shen Z W. Study on the effects of explosive covering on explosive welding of stainless steel to steel[J]. Propellants Explosives Pyrotechnics, 2019, 44: 609 − 616. doi: 10.1002/prep.201800160
    Sun Z R, Shi C G, Shi H, et al. Comparative study of energy distribution and interface morphology in parallel and double vertical explosive welding by numerical simulations and experiments[J]. Materials and Design, 2020, 195: 109027. doi: 10.1016/j.matdes.2020.109027
    曾翔宇, 李晓杰, 曹景祥, 等. 材料强度对爆炸焊接结合界面的影响[J]. 爆炸与冲击, 2019, 39(5): 139 − 145.

    Zeng Xiangyu, Li Xiaojie, Cao Jingxiang, et al. Interface characteristics of explosive welding for different strength plates[J]. Explosion and Shock Waves, 2019, 39(5): 139 − 145.
    Sandra P, Marc G, Alexandre L, et al. Investigation of JWL equation of state for detonation products at low pressure with radio interferometry[J]. Propellants Explosives Pyrotechnics, 2018, 43: 1157 − 1163. doi: 10.1002/prep.201800099
    Daridon L, Oussouaddi O, Ahzi S. Influence of the material constitutive models on the adiabatic shear band spacing: MTS, power law and Johnson-Cook models[J]. International Journal of Solids and Structures, 2004, 41: 3109 − 3124. doi: 10.1016/j.ijsolstr.2004.01.008
    李晓杰. 双金属爆炸焊接上限[J]. 爆炸与冲击, 1991, 4(2): 134 − 138.

    Li Xiaojie. The upper limit of bimetal explosive welding parameters[J]. Explosion and Shock Waves, 1991, 4(2): 134 − 138.
    邵丙璜, 张凯. 爆炸焊接原理及其工程应用[M]. 大连: 大连理工大学出版社, 1987.

    Shao Binhuang, Zhang Kai. Principles and engineering applications of explosive welding[M]. Dalian: Dalian University of Technology Press, 1987.
    陈代果, 姚勇, 邓勇军, 等. 炸药覆盖层厚度对爆炸焊接的影响[J]. 火炸药学报, 2019, 42(1): 52 − 57. doi: 10.14077/j.issn.1007-7812.2019.01.008

    Chen Daiguo, Yao Yong, Deng Yongjun, et al. Effects of covering thickness of explosives on explosive welding[J]. Chinese Journal of Explosives & Propellants, 2019, 42(1): 52 − 57. doi: 10.14077/j.issn.1007-7812.2019.01.008
    Bahrani A S, Black T J, Crossland B. The mechanics of wave formation in explosive welding[J]. Mathematical and Physical Sciences, 1967, 296(1445): 123 − 136.
  • Related Articles

    [1]WANG Huaishen, CHEN Lei, ZHANG Hongxia, CHAI Fei, YAN Xiaoying, DONG Peng. Microstructure and corrosion behavior of selective laser melting Ti-6Al-4V alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION. DOI: 10.12073/j.hjxb.20240106001
    [2]GE Yaqiong, SONG Yue, CHANG Zexin, HOU Qingling, XU Haijun, QIAO Jianfu, HOU Min. Forming Quality and Microstructure of Al0.5CoCrFeNi Bulk High-Entropy Alloy Fabricated by Selective Laser Melting[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION. DOI: 10.12073/j.hjxb.20231128003
    [3]WANG Qun, QU Yuntao, ZHANG Biao, ZHANG Yuxian, LI Rui, LI Ning, YAN Jiazhen. Bending fatigue behavior of biomedical Ti-6Al-4V alloy prepared by selective laser melting[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(4): 57-64. DOI: 10.12073/j.hjxb.20230421001
    [4]ZHU Jie, ZHOU Qingjun, CHEN Xiaohui, FENG Kai, LI Zhuguo. Influence of layer thickness on the microstructure and mechanical properties of selective laser melting processed GH3625[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(10): 12-17. DOI: 10.12073/j.hjxb.20230306002
    [5]CHEN Yanxing, LIU Xiuguo, ZHAO Yangyang, GONG Baoming, WANG Ying, LI Chengning. Microstructure and dynamic fracture behaviors of 17-4PH stainless steel fabricated by selective laser melting[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(2): 1-9. DOI: 10.12073/j.hjxb.20220306001
    [6]BA Peipei, DONG Zhihong, ZHANG Wei, PENG Xiao. Microstructure and mechanical properties of 12CrNi2 alloy steel manufactured by selective laser melting[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(8): 8-17. DOI: 10.12073/j.hjxb.20210323003
    [7]ZHANG Yu, JIANG Yun, HU Xiaoan. Microstructure and high temperature creep properties of Inconel 625 alloy by selective laser melting[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(5): 78-84. DOI: 10.12073/j.hjxb.20191211001
    [8]YANG Tianyu, ZHANG Penglin, YIN Yan, LIU Wenzhao, ZHANG Ruihua. Microstructure based on selective laser melting and mechanical properties prediction through artificial neural net[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(6): 100-106. DOI: 10.12073/j.hjxb.2019400162
    [9]YIN Yan<sup>1</sup>, LIU Pengyu<sup>1</sup>, LU Chao<sup>2</sup>, XIAO Mengzhi<sup>1,3</sup>, ZHANG Ruihua<sup>2,3</sup>. Microstructure and tensile properties of selective laser melting forming 316L stainless steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(8): 77-81. DOI: 10.12073/j.hjxb.2018390205
    [10]CAO Jian, FENG Ji-cai, LI Zhuo-ran. Selection of interlayer for field-assisted self-propagated high temperature joining of TiAl alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2004, (5): 1-4.

Catalog

    Article views (272) PDF downloads (52) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return