Citation: | WANG Dianlong, HUANG Hao, ZOU Xianxin, LIANG Zhimin, WU Chaojun. Development of high power low ripple plasma spray chopper power supply[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(3): 92-97. DOI: 10.12073/j.hjxb.20220419001 |
Mehboob G, Liu M J, Xu T, et al. A review on failure mechanism of thermal barrier coatings and strategies to extend their lifetime[J]. Ceramics International, 2020, 46(7): 8497 − 8521. doi: 10.1016/j.ceramint.2019.12.200
|
Yedida V V S, Vasudev H. A review on the development of thermal barrier coatings by using thermal spray techniques[J]. Materials Today:Proceedings, 2022, 50: 1458 − 1464. doi: 10.1016/j.matpr.2021.09.018
|
Hung F S. Material application of a transformer box: A study on the electromagnetic shielding characteristics of Al-Ta coating film with plasma-spray process[J]. Coatings, 2019, 9(8): 495 − 502. doi: 10.3390/coatings9080495
|
陈永雄, 梁秀兵, 程江波, 等. 异质双丝电弧喷涂制备复合涂层的工艺优化[J]. 焊接学报, 2019, 40(2): 38 − 41.
Chen Yongxiong, Liang Xiubing, Cheng Jiangbo, et al. Process optimization of a hybrid twin-wire arc sprayed composite coating[J]. Transactions of the China Welding Institution, 2019, 40(2): 38 − 41.
|
Singh S, Kumar R, Goel P, et al. Analysis of wear and hardness during surface hardfacing of alloy steel by thermal spraying, electric arc and TIG welding[J]. Materials Today:Proceedings, 2022, 50: 1599 − 1605. doi: 10.1016/j.matpr.2021.09.122
|
Zimmermann S, Mauer G, Rauwald K H, et al. Characterization of an axial-injection plasma spray torch[J]. Journal of Thermal Spray Technology, 2021, 30(7): 1724 − 1736. doi: 10.1007/s11666-021-01235-6
|
Liu J B, Wang L M, Liu J H. Influence of process parameters on microstructure of reactive plasma cladding TiC-Fe-Cr coating[J]. China Welding, 2021, 30(2): 35 − 41.
|
李辉, 崔新安, 赵晓兵, 等. 氩气与氢气流量对等离子喷涂铁基非晶涂层性能的影响[J]. 机械工程材料, 2021, 45(5): 39 − 44. doi: 10.11973/jxgccl202105007
Li Hui, Cui Xinan, Zhao Xiaobing, et al. Effect of Ar and H2 flow rate on properties of Fe-based amorphous coating prepared by plasma spraying[J]. Material for Mechanical Engineering, 2021, 45(5): 39 − 44. doi: 10.11973/jxgccl202105007
|
杜贵平, 黄石生. 60 kW级软开关等离子喷涂高效电源研究[J]. 电工技术学报, 2005, 20(4): 94 − 97. doi: 10.3321/j.issn:1000-6753.2005.04.017
Du Guiping, Huang Shisheng. Study of 60 kW plasma spray power supply with soft-switching technology[J]. Transactions of China Electrotechnical Society, 2005, 20(4): 94 − 97. doi: 10.3321/j.issn:1000-6753.2005.04.017
|
Curry N, Leitner M, Korner K. High-porosity thermal barrier coatings from high-power plasma spray equipment—processing, performance and economics[J]. Coatings, 2020, 10(10): 957 − 981. doi: 10.3390/coatings10100957
|
陈增泉. GP-80型高能等离子喷涂设备[J]. 焊接, 1984(8): 28.
Chen Zengquan. GP-80 high-energy plasma spraying equipment[J]. Welding & Joining, 1984(8): 28.
|
陈克选, 李春旭. PLC控制等离子喷涂设备的研制[J]. 甘肃工业大学学报, 1999(1): 19 − 22.
Chen Kexuan, Li Chunxu. Development of PLC controlled plasma-spray equipment[J]. Journal of Gansu University of Technology, 1999(1): 19 − 22.
|
张慧, 姜秀. 80 kW高性能可控硅等离子喷涂电源的研制[J]. 航空制造技术, 1999(S1): 44 − 45.
Zhang Hui, Jiang Xiu. 80 kW high performance thyristor supply used for plasma spraying[J]. Aeronautical Manufacturing Technology, 1999(S1): 44 − 45.
|
王永锋. 逆变等离子喷涂电源的研制[J]. 有色金属(冶炼部分), 2006, 4(S1): 100 − 103.
Wang Yongfeng. Development of invert plasma spray power supply[J]. Nonferrous Metals (Extractive Metallurgy), 2006, 4(S1): 100 − 103.
|
汪殿龙, 张志洋, 冀维金. 基于TMS320F2812的等离子喷涂数字化软开关逆变电源[J]. 电焊机, 2014, 44(3): 18 − 21,69.
Wang Dianlong, Zhang Zhiyang, Ji Weijin. Research on digital soft-switching plasma spray inverter based on TMS320F2812[J]. Electric Welding Machine, 2014, 44(3): 18 − 21,69.
|
Cheng X F, Peng Z Z, Yang Y L, et al. A 5.6 kW 11.7 kW per kg four-phase interleaved Buck converter for the unmanned aerial vehicle[J]. Journal of Electrical Engineering & Technology, 2022, 17(2): 1077 − 1086.
|
[1] | HOU Yujie, HAN Hongbiao, YANG Xin, ZHENG Guangzhen. Development of a closed loop control system for discharge parameters of electric spark deposition[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(9): 53-59. DOI: 10.12073/j.hjxb.20221122003 |
[2] | LIU Shanzhong, WANG Yunhao, ZHAO Yulong, ZHANG Keke. Research on closed-loop control system of CO2 shielded arc welding inverter power source[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2015, 36(1): 10-14. |
[3] | ZHU Ming, FAN Ding, SHI Yu, HUANG Jiankang, ZHANG Yuming. Double closed-loops control for arc length and current in consumable double electrode gas metal arc welding process[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2013, (8): 71-75. |
[4] | WANG Xuedong, LIU Peng, WANG Wei. Temperature control system of electron beam brazing joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (12): 81-84. |
[5] | ZHANG Xiao-yun, CHEN Guan-long, ZHANG Yan-song, ZHANG Xu-qiang. Design of PLC control system for servo gun spot welding system[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2006, (7): 1-4. |
[6] | FANG Chen-fu, YIN Shu-yan, HOU Run-shi, YU Ming, WANG Jin-cheng. Double close loops control system of peak current mode of inverter arc welding power supply[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2005, (10): 14-18. |
[7] | Zhand Hua, Pan Jiluan, Liao Baojian. Real-time Measurement of Welding Temperature Field and Closed-loop Control of Penetration[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1998, (3): 50-57. |
[8] | Doctor Candidate Cheng Qiang, Pan Jiluan, Liu Wenhuan, Wan Kezheng. A CLOSED LOOP CONTROL SYSTEM FOR ONE SIDE MIG WELDING WITH BACK BEAD FORMATION[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1988, (2): 110-118. |
[9] | Pan Jiluan, Zhang Renhao, Ou Zhiming, Wu Zhiqiang. CLOSED LOOP SYSTEM FOR CONTROLLING PULSED MIG WELDING ARC[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1985, (2): 91-98. |
[10] | Chi Yuankui, Yin Dianxiang, Gao Yunzhi. CLOSE LOOP CONTROL OF WELD PENETRATION IN PULSE PLASMA ARC WELDING[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1980, (1): 11-17. |
1. |
王晓飞,田峻. 压力容器焊接工艺对疲劳强度的影响分析. 中国机械. 2025(08): 50-53 .
![]() |