Advanced Search
LIU Runtao, ZHU Yanli, WANG Zeli, LIU Liming. Influence of cusp magnetic field polarity on arc shape and weld characteristics of twin-electrode TIG welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(3): 37-43. DOI: 10.12073/j.hjxb.20220410001
Citation: LIU Runtao, ZHU Yanli, WANG Zeli, LIU Liming. Influence of cusp magnetic field polarity on arc shape and weld characteristics of twin-electrode TIG welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(3): 37-43. DOI: 10.12073/j.hjxb.20220410001

Influence of cusp magnetic field polarity on arc shape and weld characteristics of twin-electrode TIG welding

More Information
  • Received Date: April 09, 2022
  • Available Online: January 17, 2023
  • Aiming at the problems of low arc pressure and shallow weld penetration in twin-electrode TIG (T-TIG) welding, a T-TIG welding method assisted by cusp magnetic fields with different polarities is introduced. A high-speed camera and an infrared camera were used to study the influence of cusp magnetic fields of different polarities on arc shape and weld characteristics, and a physical model was constructed to reveal the interaction mechanism between cusp magnetic fields and arc plasma. The results show that the external cusp magnetic field affects the shape of the T-TIG arc and the temperature field of the weld, and the cusp magnetic fields of both polarities can refine the structure of the heat-affected zone. Among them, under the action of a positive cusp magnetic field, the T-TIG arc shape changes more greatly, the weld temperature field is more concentrated, the penetration depth of the weld is increased by 37.1% compared with that without a magnetic field, and the energy utilization efficiency increases by 31.6%.
  • 吴统立, 王克鸿, 孔见, 等. 不锈钢高频复合双钨极氩弧焊接工艺方法[J]. 焊接学报, 2018, 39(10): 20 − 24 + 129 − 130.

    Wu Tongli, Wang Kehong, Kong Jian, et al. High frequency composite double tungsten argon arc welding process for stainless steel[J]. Transactions of the China Welding Institution, 2018, 39(10): 20 − 24 + 129 − 130.
    Yong H, Cao R, Ren Q. The element transfer behavior of gas pool coupled activating TIG welding[J]. China Welding, 2018, 27(4): 1 − 9.
    Leng X, Zhang G, Gao H, et al. A study on twin-tungsten TIG welding method[J]. China Welding, 2006, 15(1): 49 − 52.
    冷雪松. 双钨极氩弧焊耦合电弧物理特性及焊接工艺研究[D]. 哈尔滨: 哈尔滨工业大学, 2008.

    Leng Xuesong. Research on physical properties and welding process of coupled arc in double tungsten argon arc welding[D]. Harbin: Harbin Institute of Technology, 2008.
    王树保. 双钨极氩弧焊物理特性及工艺研究[D]. 哈尔滨: 哈尔滨工业大学, 2006.

    Wang Shubao. Research on physical properties and process of double tungsten argon arc welding [D]. Harbin: Harbin Institute of Technology, 2006.
    黄九龄, 孔谅, 王敏, 等. 纯钛TA2薄板双钨极氩弧焊焊接工艺[J]. 焊接学报, 2019, 40(9): 14 − 18 + 161.

    Huang Jiuling, Kong Liang, Wang Min, et al. Pure titanium TA2 thin plate double tungsten electrode argon arc welding process[J]. Transactions of the China Welding Institution, 2019, 40(9): 14 − 18 + 161.
    Wu H, Chang Y, Lu L, et al. Review on magnetically controlled arc welding process[J]. The International Journal of Advanced Manufacturing Technology, 2017, 91: 4263 − 4273.
    刘晓光, 关子奇, 张洪旭, 等. 磁控TIG焊接技术的研究现状及展望[J]. 热加工工艺, 2019, 48(15): 1 − 5. doi: 10.14158/j.cnki.1001-3814.2019.15.001

    Liu Xiaoguang, Guan Ziqi, Zhang Hongxu, et al. Research status and prospect of magnetron TIG welding technology[J]. Hot Working Technology, 2019, 48(15): 1 − 5. doi: 10.14158/j.cnki.1001-3814.2019.15.001
    龙琼, 钟云波, 余正平, 等. 外加磁场下焊接技术的研究现状[J]. 中国材料进展, 2020, 39(6): 472 − 479.

    Long Qiong, Zhong Yunbo, Yu Zhengping, et al. Research status of welding technology under external magnetic field[J]. Advances in Materials in China, 2020, 39(6): 472 − 479.
    Liu Z M, Chen S Y, Yuan X, et al. Magnetic-enhanced keyhole TIG welding process[J]. The International Journal of Advanced Manufacturing Technology, 2018, 99(1): 275 − 285.
    Liu S, Liu Z M, Zhao X C, et al. Influence of cusp magnetic field configuration on K-TIG welding arc penetration behavior[J]. Journal of Manufacturing Processes, 2020, 53: 229 − 237. doi: 10.1016/j.jmapro.2020.02.027
    Zhu Y, Xu X, Liu R, et al. Magnetic-enhanced common conductive channel characteristics of two-electrode TIG[J]. The International Journal of Advanced Manufacturing Technology, 2021, 116(9): 3217 − 3229.
    Liu L, Zhu Y, Liu R. Influence of cusp external magnetic field on deposition rate of two-electrode TIG welding[J]. The International Journal of Advanced Manufacturing Technology, 2022, 119(9-10): 6549 − 6558. doi: 10.1007/s00170-022-08706-2
    Ueyama T, Ohnawa T, Tanaka M, et al. Occurrence of arc interaction in tandem pulsed gas metal arc welding[J]. Science and Technology of Welding and Joining, 2007, 12(6): 523 − 529. doi: 10.1179/174329307X173715
    Maecker H. Plasmastromungen in lichtbogen infolge eigenmagnetischer kompression[J]. Zeitschrift für Physik, 1955, 141(1-2): 198 − 216.
    安藤弘平, 长谷川光雄. 焊接电弧现象[M]. 北京: 机械工业出版社, 1985.

    Ando K, Hasegawa M. The phenomenon of welding arc[M]. Beijing: China Machine Press, 1985.
    Liu L, Xu X, Xu G, et al. Effect of laser on double-arc physical characteristics in pulsed laser induced double-TIG welding[J]. The International Journal of Advanced Manufacturing Technology, 2021, 119(3-4): 1515 − 1529.

Catalog

    Article views (304) PDF downloads (59) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return