Citation: | MIAO Guanghong, HU Yu, AI Jiuying, QI Junxiang, MA Honghao, SHEN Zhaowu. Numerical simulation research on the effect of explosive covering on explosive welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(1): 40-48. DOI: 10.12073/j.hjxb.20220121002 |
Fronczek D M, Wojewoda-Budka J, Chulist R, et al. Structural properties of Ti/Al clads manufactured by explosive welding and annealing[J]. Materials & Design, 2016, 91: 80 − 89.
|
Mahmood Y, Dai K D, Chen P W, et al. Experimental and Numerical Study on Microstructure and Mechanical Properties of Ti-6Al-4V/Al-1060 Explosive Welding[J]. Metals, 2019, 9(11): 1189. doi: 10.3390/met9111189
|
Ren B X, Tao G, Wen P, et al. Study on weldability window and interface morphology of steel tube and tungsten alloy rod welded by explosive welding[J]. International Journal of Refractory Metals and Hard Materials, 2019, 84: 105005. doi: 10.1016/j.ijrmhm.2019.105005
|
Liu K Y, Chen P W, Feng J R, et al. Fabrication and characterization of the Mo/CU bimetal with thick Mo layer and high interfacial strength[J]. International Journal of Refractory Metals and Hard Materials, 2021, 94: 105383. doi: 10.1016/j.ijrmhm.2020.105383
|
Akbari M S A A, Farhadi S P. Experimental investigation of explosive welding of cp-titanium/AISI 304 stainless steel[J]. Materials & Design, 2009, 30(3): 459 − 468.
|
Gladkovsky S V, Kuteneva S V, Sergeev S N. Microstructure and mechanical properties of sandwich copper/steel composites produced by explosive welding[J]. Materials Characterization, 2019, 154: 294 − 304. doi: 10.1016/j.matchar.2019.06.008
|
Loureiro A, Mendes R, Ribeiro J B, et al. Effect of explosive mixture on quality of explosive welds of copper to aluminium[J]. Materials & Design, 2016, 95: 256 − 267.
|
邢廷勇, 郑雁军, 崔立山, 等. 时效对爆炸焊接合成TiNi/TiNi合金阻尼行为的影响[J]. 中国有色金属学会学报, 2009, 19(6): 1470 − 1473. doi: 10.1016/S1003-6326(09)60053-4
Xing Tingyong, Zheng Yanjun, Cui Lishan, et al. Influence of aging on damping behavior of TiNi/TiNi alloys synthesized by explosive welding[J]. Transactions of Nonferrous Metals Society of China, 2009, 19(6): 1470 − 1473. doi: 10.1016/S1003-6326(09)60053-4
|
吴晓明, 史长根, 房中行, 等. 有无夹层的钛铝爆炸焊接能量与界面特性的对比研究[J]. 材料与设计, 2021, 197: 109279.
Wu Xiaoming, Shi Changgen, Fang Zhonghang, et al. Comparative study on welding energy and Interface characteristics of titanium aluminum explosive composites with and without interlayer[J]. Materials & Design, 2021, 197: 109279.
|
Mori D, Kasada R, Konishi S, et al. Underwater explosive welding of tungsten to reduced-activation ferritic steel F82H[J]. Fusion Engineering and Design, 2014, 89(7-8): 1086 − 1090. doi: 10.1016/j.fusengdes.2013.12.038
|
Liu W D, Liu K X, Chen Q Y, et al. Metallic glass coating on metals plate by adjusted explosive welding technique[J]. Applied Surface Science, 2009, 255(23): 9343 − 9347. doi: 10.1016/j.apsusc.2009.07.033
|
Sui G F, Li J S, Li H W, et al. Investigation on the explosive welding mechanism of corrosion-resisting aluminum and stainless steel tubes through finite element simulation and experiments[J]. International Journal of Minerals Metallurgy and Materials, 2012, 19(2): 151 − 158. doi: 10.1007/s12613-012-0531-4
|
杨明, 马宏昊, 沈兆武, 等. 炸药覆层对不锈钢与钢爆炸焊接的影响研究[J]. 推进剂, 炸药, 烟火, 2019, 44(5): 609 − 616. doi: 10.1002/prep.201800160
Yang Ming, Ma Hong-hao, Shen Zhao-wu,. et al. Study on the Effects of Explosive Covering on Explosive Welding of Stainless Steel to Steel[J]. Propellants, Explosives, Pyrotechnics, 2019, 44(5): 609 − 616. doi: 10.1002/prep.201800160
|
章冠人, 陈大年. 凝聚炸药起爆动力学[M]. 北京: 国防工业出版社, 1991.
Zhang Guanren, Chen Danian. Condensed Explosive Detonation Dynamics[M]. Beijing: National Defense Industry Press, 1991.
|
李裕春, 时党勇, 赵远. ANSYS11.0/LS-DYNA基础理论与工程实践[M]. 北京: 中国水利水电出版社, 2008.
Li Yuchun, Shi Dangyong, Zhao Yuan. ANSYS11.0/LS-DYNA Basic Theory and Engineering Practice[M]. Beijing: China Water&Power Press, 2008.
|
辛春亮, 薛再清, 涂建, 等. 有限元分析常用材料参数手册[M]. 北京: 机械工业出版社, 2019.
Xin Chunliang, Xue Zaiqing, Tu Jian, et al. Handbook of Common Material Parameters for Finite Element Analysis. Beijing: China Machine Press, 2019.
|
Steinberg D J, Cochran S G, Guinan M W. A constitutive model for metals applicable at high-strain rate[J]. Journal of Applied Physics, 1980, 51: 1498 − 1504. doi: 10.1063/1.327799
|
Liu G R, Liu M B. Smoothed Particle Hydrodynamics: A Meshfree Particle Method[M]. Changsha: Hunan University Press, 2005.
|
Walsh J, Shreffler R, Willig F. Limiting conditions for jet formation in high velocity collisions[J], Journal of Applied Physics, 1953, 24: 349359.
|
郑远谋. 爆炸焊接和爆炸复合材料[M]. 北京: 国防工业出版社, 2017.
Zheng Yuanmou. Explosive Welding and Explosive Composite Material[M]. Beijing: National Defense Industry Press, 2017.
|
Cowan G R, Bergmann O R, Holtzman A H. Mechanism of bond zone wave formation in explosion-clad metals[J]. Metallurgical and Materials Transactions B, 1971, 2: 3145 − 3155. doi: 10.1007/BF02814967
|
Shao B H, Zhang K. Explosive welding principle and its application[M]. Dalian: Dalian University of Science and Technology Press, 1987.
|
缪广红, 马雷鸣, 吴建强, 等. 基复板间距对爆炸焊接质量影响的数值模拟[J]. 爆破, 2020, 37(2): 106 − 114. doi: 10.3963/j.issn.1001-487X.2020.02.019
Miao Guanghong, Ma Leiming, Wu Jianqiang, et al. Numerical Simulation of Influence of Spacing between Base Plate and Flyer Plate on Welding Quality[J]. Blasting, 2020, 37(2): 106 − 114. doi: 10.3963/j.issn.1001-487X.2020.02.019
|
Zheng Z M, Yang Z S. Explosion Processing[M]. Beijing: National Defense Industry Press, 1981.
|
[1] | FU Kuijun, ZHAO Jingwei, GAO Mingze, LENG Xuesong, YAN Jiuchun. Grain growth and phase transformation in the welded joint HAZ of TiNbV microalloyed steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(3): 17-22. DOI: 10.12073/j.hjxb.20190715004 |
[2] | ZHENG Huaibei, YE Xiaoning, ZHANG Xuefeng, JIANG Laizhu, LIU Zhenyu, WANG Guodong. Microstructure transformation,grain growth and precipitated phase of 12%Cr ferritic stainless steel in coarse grain zone[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2011, (6): 37-40. |
[3] | ZHANG Genyuan, XU Maili, TIAN Songya, Wen Fang. Genetic algorithm of grain growth in heat-affected zone of 45 steel AC flash butt welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2009, (6): 79-82. |
[4] | LI Yubin, MENG Daqiao, LIU Kezhao, XIE Zhiqiang. Simulation of the microstructure evolution of welding-grain growth in heat affected zone[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2009, (1): 25-28,32. |
[5] | WU Wei, GAO Hongming, CHENG Guangfu, WU Lin. Grain growth in heat affected zone of fine grained titanium alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (10): 57-60, 64. |
[6] | ZHANG Guifeng, MIAO Huixia, ZHANG Jianxun, PEI Yi, WANG Jian, ZHANG Yantao. Effects of immediate water cooling and normalization after welding on microstructure and hardness of heat affected zone of ultra-fine grain steels welded joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2007, (12): 47-50. |
[7] | WEN Jun qin, LIU Xin tian, MO Chun li, ZHANG Shi xing. Microstructure simulation of grain growth in heat affected zone[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2003, (3): 48-51. |
[8] | QU Zhao-xia, TIAN Zhi-ling, DU Ze-yu. The HAZ Grain Growth Diagram of the New Generation Steel with Yield Strength 400 Mpa[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2002, (3): 29-31. |
[9] | QU Zhao-xia, TIAN Zhi-ling, DU Ze-yu, HE Chang-hong, ZHANG Xiao-mu, YANG Bai. Grain Growth in HAZ of Ultra-fine Grain Steels[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2000, (4): 9-12. |
[10] | SUN Jun-sheng, WU Chuan-song, Li Ya-jiang. Welding Heat Transfer of GMAW and Its Effects on Austenite Grain Growth Process in HAZ[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2000, (3): 27-31. |