Advanced Search
DU Suigeng, LIU Guanxiang, LI Ju. Microstructure and properties of the linear friction welded joints between the different quality TC17 with post-weld aging treatments[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(7): 7-13. DOI: 10.12073/j.hjxb.20220109002
Citation: DU Suigeng, LIU Guanxiang, LI Ju. Microstructure and properties of the linear friction welded joints between the different quality TC17 with post-weld aging treatments[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(7): 7-13. DOI: 10.12073/j.hjxb.20220109002

Microstructure and properties of the linear friction welded joints between the different quality TC17 with post-weld aging treatments

More Information
  • Received Date: January 08, 2022
  • Available Online: July 18, 2022
  • Linear friction welding has been a key technology for manufacturing aero-engine blisks. The microstructure and properties of linear friction welded (LFW) joints of TC17 (α + β) and TC17(β) titanium alloy and post weld aging treatment (PWAT) joints at different temperature are compared by testing of optical microscope, scanning electron microscope, universal testing machine and microhardness tester. The results show that the microstructure of the weld and the surrounding area in the welded state is supercooled β-fine grained, with the lowest hardness. After post-weld aging treatment, fine needle-like α-phase is precipitated, and the hardness increases. The hardness values of the welding area and the surrounding area are obviously increased when the post-weld aging temperature is 400 ℃, and the welding area is embrittled. The bending angle of the joint is the highest, but the strength decreases when the post-weld aging temperature is 630 ℃. With the considerations of both the bending and tensile properties of the welded joint, the optimal post-weld aging temperature is found to be 550 ℃. The joint’s bending angle and tensile strength could reach 36% and 95% of that of the base metal, respectively. The micro plasticity deformations of TC17(α + β) thermal and mechanical affected zone (TMAZ) are more uniform after applying force, and its strength and plastic properties are than those of the TC17(β) side TMAZ. The weakest zone of the joint is located at TC17(β) TMAZ, where the variations of the hardness and microstructure have the greatest gradient. Compared with the base metal, the plastic loss of LFW joint is much greater than the strength loss.
  • Sadallah Y. Linear friction welding – process development and applications in aerospace industry[C]//The 14th World Conference on Titanium, MATEC Web of Conferences 321. Nantes, France, 2020: 201903022.
    李晓红, 张彦华, 李赞, 等. 热处理温度对TC17(α + β)/TC17(β)钛合金线性摩擦焊接头组织及力学性能的影响[J]. 材料工程, 2020, 48(1): 115 − 120. doi: 10.11868/j.issn.1001-4381.2018.000295

    Li Xiaohong, Zhang Yanhua, Li Zan, et al. Effect of heat treatment temperatures on microstructure and mechanical property of linear friction welded joints of titanium alloys TC17 (α+β)/TC17(β)[J]. Journal of Material Engineering, 2020, 48(1): 115 − 120. doi: 10.11868/j.issn.1001-4381.2018.000295
    李菊, 张田仓, 郭德伦. 热处理对 TC17(α + β)/TC17(β) 线性摩擦焊接头组织及力学性能的影响[J]. 焊接学报, 2018, 39(5): 97 − 100,120. doi: 10.12073/j.hjxb.2018390131

    Li Ju, Zhang Tiancang, Guo Delun. Influence of heat treatment on microstructure and mechanical properties of TC17(α + β)/TC17(β) linear friction welding joint[J]. Transactions of the China Welding Institution, 2018, 39(5): 97 − 100,120. doi: 10.12073/j.hjxb.2018390131
    常川川, 张田仓, 李菊, 等. 高氧TC4/TC17钛合金线性摩擦焊接头组织特征及力学性能[J]. 焊接学报, 2019, 40(12): 109 − 114,120.

    Chang Chuanchuan, Zhang Tiancang, Li Ju, et al. Microstructure and properties of linear friction welded joint of hyperoxia TC4/TC17 dissimilar titanium alloys[J]. Transactions of the China Welding Institution, 2019, 40(12): 109 − 114,120.
    周军, 梁武, 张春波, 等. TC17钛合金线性摩擦焊接头组织及力学性能分析[J]. 焊接学报, 2020, 41(5): 36 − 41. doi: 10.12073/j.hjxb.20200408002

    Zhou Jun, Liang Wu, Zhang Chunbo, et al. Microstructure and mechanical properties of linear friction welding joint of TC17 titanium alloy[J]. Transactions of the China Welding Institution, 2020, 41(5): 36 − 41. doi: 10.12073/j.hjxb.20200408002
    Zhao Pengkang, Fu Li, Chen Haiyan. Low cycle fatigue properties of linear friction welded joint of TC11 and TC17 titanium alloys[J]. Journal of Alloys and Compounds, 2016, 675: 248 − 256. doi: 10.1016/j.jallcom.2016.03.113
    Dalgaard E, Wanjara P, Gholpour J, et al. Linear friction welding of a near-β titanium alloy[J]. Acta Materialia, 2012, 60(2): 770 − 780. doi: 10.1016/j.actamat.2011.04.037
    Yina Guo, Taenam Jung, Yu Lung Chiu, et al. Microstructure and microhardness of Ti6246 linear friction weld[J]. Materials Science & Engineering A, 2013, 562: 17 − 24.
    García J M, Gaslain F, Morgeneyer T F. On the effect of a thermal treatment on the tensile and fatigue properties of weak zones of similar Ti17 linear friction welded joints and parent material[J]. Materials Characterization, 2020, 169(110570): 1 − 18.
    García J M, Esin V A, Morgeneyer T F. Strength, fatigue strength and toughness of dissimilar Ti17-Ti64 linear friction welded joints: Effect of soft surface contamination and depletion of α precipitates. Materials Science & Engineering A, 2021, 799(139989): 1 − 19.
    杜随更, 徐婉婷, 高漫. TC17-TC11异种钛合金线性摩擦焊接头弯曲性能分析与改善[J]. 机械工程学报, 2021, 57(24): 200 − 210. doi: 10.3901/JME.2021.23.001

    Du Suigeng, Xu Wanting, Gao Man. Bending property analysis and improvement of TC17-TC11 dissimilar titanium alloy linear friction welding joint[J]. Journal of Mechanical Engineering, 2021, 57(24): 200 − 210. doi: 10.3901/JME.2021.23.001
  • Related Articles

    [1]WANG Xingxing, LONG Weimin, HE Peng, JIU Yongtao, YANG Congli. Effect of aging treatment on interfacial microstructure and mechanical properties of Ni/babbitt alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(8): 113-117. DOI: 10.12073/j.hjxb.2019400218
    [2]KANG Jiarui1, SONG Xiaoguo1,2, HU Shengpeng1, CAO Jian1,2, FENG Jicai1,2. Interfacial microstructure and properties of TC4/QCr0.8 joints brazed with AgCu filler[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(4): 27-30. DOI: 10.12073/j.hjxb.2018390089
    [3]SONG Xiaoguo1,2, SI Xiaoqing1,2, NI Haochen2, CAO Jian1, YU Jinbo2, FENG Jicai1. Interfacial microstructure and properties of TiAl alloy brazed joint with Ni-34Ti brazing alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2017, 38(7): 13-16. DOI: 10.12073/j.hjxb.20150723002
    [4]SONG Xiaoguo, WANG Meirong, LIN Xingtao, LIU Jiakun, CAO Jian, FENG Jicai. Effect of bonding temperature on interfacial microstructure and properties of TiAl/Ti_3AlC_2 joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2014, 35(10): 9-12.
    [5]SONG Xiaoguo, CAO Jian, CHEN Haiyan, SI Guodong, FENG Jicai. Interfacial microstructure and properties of TiAl joints brazed with composite filler reinforced by particles[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2013, (7): 13-16.
    [6]ZOU Jiasheng, ZUO Huaiwen, XU Xiangping. Interfacial structure and strength of Si3N4 ceramics joint brazed with amorphous filler metal and Cu layer[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2012, (12): 5-8.
    [7]WANG Guoxing, SONG Xiaoguo, CHEN Haiyan, LI Yang, CAO Jian. Interfacial microstructure and properties of Si_3N_4 joints brazed using TiNi-V eutectic brazing alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2012, (10): 41-44.
    [8]LI Haixin, WEI Hongmei, HE Peng, FENG Jicai. Interfacial microstructure and bonding strength of diffusion bonded TiAl/Ti/Nb/GH99 alloy joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2012, (9): 9-12.
    [9]ZHANG Bin, DING Wenfeng, XU Jiuhua, CHEN Zhenzhen, SU Honghua, FU Yucan. Interfacial microstructure of sintering composites of PCBN grains-graphite particles-CuSnTi alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2011, (12): 63-65,69.
    [10]YANG Zhibo, XU Jiuhua, LIU Aiju. Analysis on interfacial microstructure of laser brazing diamond grits[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2010, (10): 9-12.
  • Cited by

    Periodical cited type(10)

    1. 钱维兴,李杰,盛耀飚,刘成威,覃恩伟,陈国星,陆海峰,魏少翀,尹嵩,吴树辉. 2种FeCr基高速电弧涂层的组织和耐磨性能对比研究. 材料保护. 2022(05): 10-17 .
    2. 韩冰源,杜伟,朱胜,黄庆伟,李小平,崔方方,徐文文. 等离子喷涂典型耐磨涂层材料体系与性能现状研究. 表面技术. 2021(04): 159-171 .
    3. 丁怀博,刘成威,陈嘉诚,王惠生,吴树辉,覃恩伟,王博,黄骞,陆海峰,邓春银. 高速电弧喷涂Fe基涂层的耐磨性能研究. 热喷涂技术. 2021(03): 16-22+40 .
    4. 刘明,陈书赢,马国政,邢志国,何鹏飞,王海斗,霍明亮. 热喷涂涂层/基体异质界面结合强度优化理论与方法现状研究. 机械工程学报. 2020(10): 64-77 .
    5. 庞新星,黄梦婷,王灿明,史秀丽,张文娅. 高温扩散对超音速火焰喷涂NiCrBSi结晶器涂层组织与性能的影响. 金属热处理. 2019(02): 181-186 .
    6. 董天顺,郑晓东,李国禄,王海斗,周秀锴,李亚龙. 大气等离子喷涂Fe基涂层及其氩弧重熔层的组织与力学性能. 材料导报. 2019(04): 679-683 .
    7. 董天顺,李小兵,李国禄,王海斗,刘明,周秀锴. 重熔对NiCrBSi涂层组织及高温耐磨性能的影响. 表面技术. 2018(08): 105-112 .
    8. 董天顺,郑晓东,李亚龙,李小兵,周秀锴,李国禄. 重熔处理热喷涂层的研究现状及展望. 材料保护. 2018(02): 95-99 .
    9. 王佳峰,崔洪芝,毕文彪,张新杰,王明亮. 等离子重熔处理对SPS烧结FeWB涂层组织及耐磨性影响. 材料热处理学报. 2018(05): 117-125 .
    10. 董天顺,郑晓东,孟宏杰,付彬国,李国禄,李亚龙. Fe基氩弧重熔涂层的制备及其磨损性能研究. 表面技术. 2018(12): 155-165 .

    Other cited types(14)

Catalog

    Article views (289) PDF downloads (43) Cited by(24)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return