Citation: | WANG Shuai, FU Liming, YUAN Yong, YIN Hongfei, XU Jijin, GU Yuefeng. Mechanism and elimination of hot cracks in laser additive manufacturing of NiFe based superalloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(5): 8-13. DOI: 10.12073/j.hjxb.20220101001 |
Zhang P, Li J, Gong X, et al. Creep behavior and deformation mechanisms of a novel directionally solidified Ni-base superalloy at 900 °C[J]. Materials Characterization, 2019, 148: 201 − 207. doi: 10.1016/j.matchar.2018.12.023
|
袁勇, 党莹樱, 杨珍, 等. 700℃先进超超临界机组末级过热器用新型镍铁基高温合金的组织与性能[J]. 机械工程材料, 2020, 44(1): 44 − 50. doi: 10.11973/jxgccl202001008
Yuan Yong, Dang Yingying, Yang Zhen, et al. Microstructure and properties of Ni-Fe-base superalloy for 700 ℃ advanced ultra supercritical unit final superheater[J]. Materials for Mechanical Engineering, 2020, 44(1): 44 − 50. doi: 10.11973/jxgccl202001008
|
Ostovari Moghaddam A, Shaburova N A, Samodurova M N, et al. Additive manufacturing of high entropy alloys: A practical review[J]. Journal of Materials Science & Technology, 2021, 77: 131 − 162.
|
Lin D, Xu L, Li X, et al. A Si-containing FeCoCrNi high-entropy alloy with high strength and ductility synthesized in situ via selective laser melting[J]. Additive Manufacturing, 2020, 35: 101340. doi: 10.1016/j.addma.2020.101340
|
Zheng M, Li C, Zhang X, et al. The influence of columnar to equiaxed transition on deformation behavior of FeCoCrNiMn high entropy alloy fabricated by laser-based directed energy deposition[J]. Additive Manufacturing, 2021, 37: 101660. doi: 10.1016/j.addma.2020.101660
|
Griffiths S, Ghasemi H, Ivas T, et al. Combining alloy and process modification for micro-crack mitigation in an additively manufactured Ni-base superalloy[J]. Additive Manufacturing, 2020, 36: 101443. doi: 10.1016/j.addma.2020.101443
|
Sun Z, Tan X, Wang C, et al. Reducing hot tearing by grain boundary segregation engineering in additive manufacturing: example of an AlxCoCrFeNi high-entropy alloy[J]. Acta Materialia, 2021, 204: 116505. doi: 10.1016/j.actamat.2020.116505
|
Montero L, Liu Z, Bautmans L, et al. Effect of temperature on the microstructure and tensile properties of micro-crack free hastelloy X produced by selective laser melting[J]. Additive Manufacturing, 2020, 31: 100995. doi: 10.1016/j.addma.2019.100995
|
王爱华, 彭云, 肖红军, 等. 层间温度对690 MPa级HSLA钢熔敷金属裂纹扩展功的影响[J]. 焊接学报, 2012, 33(8): 65 − 68, 72.
Wang Aihua, Peng Yun, Xiao Hongjun, et al. Effects of interpass temperature on crack propagation energy in deposited metal of 690 MPa grade HSLA steel[J]. Transactions of the China Welding Institution, 2012, 33(8): 65 − 68, 72.
|
Liu P, Zhang R, Yuan Y, et al. Effects of nitrogen content on microstructures and tensile properties of a new Ni-Fe based wrought superalloy[J]. Materials Science and Engineering: A, 2021, 801: 140436. doi: 10.1016/j.msea.2020.140436
|
刘悦, 熊建坤, 赵海燕, 等. Hastelloy X和Haynes 230激光焊接头的组织性能[J]. 焊接学报, 2017, 38(8): 82 − 86.
Liu Yue, Xiong Jiankun, Zhao Haiyan, et al. Microstructure of laser-welded Hastelloy X and laser-welded Haynes 230[J]. Transactions of the China Welding Institution, 2017, 38(8): 82 − 86.
|
冯伟, 徐锴, 郭枭, 等. 镍基丝极埋弧焊材料焊接热裂纹的分析与防止[J]. 焊接, 2016(8): 64 − 67, 76. doi: 10.3969/j.issn.1001-1382.2016.08.014
Feng Wei, Xu Kai, Guo Xiao, et al. Analysis and prevention of hot crack in nickel based submerged arc welding material welding[J]. Welding & Joining, 2016(8): 64 − 67, 76. doi: 10.3969/j.issn.1001-1382.2016.08.014
|
Guo X, Liu S, Xu J, et al. Effect of step cooling process on microstructures and mechanical properties in thermal simulated CGHAZ of an ultra-high strength steel[J]. Materials Science and Engineering: A, 2021, 824: 141827. doi: 10.1016/j.msea.2021.141827
|
Xu J, Wang S, Chai Z, et al. Comparison of the stress corrosion cracking behaviour of AISI 304 pipes welded by TIG and LBW[J]. Acta Metallurgica Sinica (English Letters), 2021, 34(4): 579 − 589. doi: 10.1007/s40195-020-01126-9
|
郭枭, 徐锴, 霍树斌, 等. 镍基合金焊丝GTAW熔敷金属凝固偏析行为[J]. 焊接学报, 2019, 40(7): 105 − 108. doi: 10.12073/j.hjxb.2019400190
Guo Xiao, Xu Kai, Huo Shubin, et al. Investigation on the solidification segregation behavior of GTAW nickel alloy deposited metal[J]. Transactions of the China Welding Institution, 2019, 40(7): 105 − 108. doi: 10.12073/j.hjxb.2019400190
|
Zhao P, Fang K, Tang C, et al. Effect of interlayer cooling time on the temperature field of 5356-TIG wire arc additive manufacturing[J]. China Welding, 2021, 30(2): 17 − 24.
|
Xu J, Lin X, Guo P, et al. The initiation and propagation mechanism of the overlapping zone cracking during laser solid forming of IN-738LC superalloy[J]. Journal of Alloys and Compounds, 2018, 749: 859 − 870. doi: 10.1016/j.jallcom.2018.03.366
|
[1] | WANG Huaishen, CHEN Lei, ZHANG Hongxia, CHAI Fei, YAN Xiaoying, DONG Peng. Microstructure and corrosion behavior of selective laser melting Ti-6Al-4V alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION. DOI: 10.12073/j.hjxb.20240106001 |
[2] | GE Yaqiong, SONG Yue, CHANG Zexin, HOU Qingling, XU Haijun, QIAO Jianfu, HOU Min. Forming Quality and Microstructure of Al0.5CoCrFeNi Bulk High-Entropy Alloy Fabricated by Selective Laser Melting[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION. DOI: 10.12073/j.hjxb.20231128003 |
[3] | WANG Qun, QU Yuntao, ZHANG Biao, ZHANG Yuxian, LI Rui, LI Ning, YAN Jiazhen. Bending fatigue behavior of biomedical Ti-6Al-4V alloy prepared by selective laser melting[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(4): 57-64. DOI: 10.12073/j.hjxb.20230421001 |
[4] | ZHU Jie, ZHOU Qingjun, CHEN Xiaohui, FENG Kai, LI Zhuguo. Influence of layer thickness on the microstructure and mechanical properties of selective laser melting processed GH3625[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(10): 12-17. DOI: 10.12073/j.hjxb.20230306002 |
[5] | CHEN Yanxing, LIU Xiuguo, ZHAO Yangyang, GONG Baoming, WANG Ying, LI Chengning. Microstructure and dynamic fracture behaviors of 17-4PH stainless steel fabricated by selective laser melting[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(2): 1-9. DOI: 10.12073/j.hjxb.20220306001 |
[6] | BA Peipei, DONG Zhihong, ZHANG Wei, PENG Xiao. Microstructure and mechanical properties of 12CrNi2 alloy steel manufactured by selective laser melting[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(8): 8-17. DOI: 10.12073/j.hjxb.20210323003 |
[7] | ZHANG Yu, JIANG Yun, HU Xiaoan. Microstructure and high temperature creep properties of Inconel 625 alloy by selective laser melting[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(5): 78-84. DOI: 10.12073/j.hjxb.20191211001 |
[8] | YANG Tianyu, ZHANG Penglin, YIN Yan, LIU Wenzhao, ZHANG Ruihua. Microstructure based on selective laser melting and mechanical properties prediction through artificial neural net[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(6): 100-106. DOI: 10.12073/j.hjxb.2019400162 |
[9] | YIN Yan<sup>1</sup>, LIU Pengyu<sup>1</sup>, LU Chao<sup>2</sup>, XIAO Mengzhi<sup>1,3</sup>, ZHANG Ruihua<sup>2,3</sup>. Microstructure and tensile properties of selective laser melting forming 316L stainless steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(8): 77-81. DOI: 10.12073/j.hjxb.2018390205 |
[10] | CAO Jian, FENG Ji-cai, LI Zhuo-ran. Selection of interlayer for field-assisted self-propagated high temperature joining of TiAl alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2004, (5): 1-4. |