Advanced Search
XIAO Yong, CHENG Zhao, ZHOU Jianjun, ZHANG Jian, LUO Dan, LI Mingyu. Arc spraying Ag-based coating on aluminum alloy surface and its low-temperature soldering behavior[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(12): 27-34. DOI: 10.12073/j.hjxb.20211208003
Citation: XIAO Yong, CHENG Zhao, ZHOU Jianjun, ZHANG Jian, LUO Dan, LI Mingyu. Arc spraying Ag-based coating on aluminum alloy surface and its low-temperature soldering behavior[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(12): 27-34. DOI: 10.12073/j.hjxb.20211208003

Arc spraying Ag-based coating on aluminum alloy surface and its low-temperature soldering behavior

More Information
  • Received Date: December 07, 2021
  • Available Online: November 10, 2022
  • In waveguide devices, large-area and reliable low-temperature soldering bonding between the aluminum alloy shell and the microstrip circuit board were difficult because of the poor wettability of the Al alloy. In this study, Ag-15%Ni coating layer and Ni-5%Al/Ag-15%Ni composite coating layers with a thickness approximately of 80 μm were prepared on the surface of 5A06 Al alloy by arc spraying technology to improve the wettability of Sn-Pb alloy solder on the Al alloy surface. Comparable studies were performed on the microstructure, interfacial bonding behavior, low-temperature soldering behavior of the two kinds of coating layers, and the shearing failure mechanism of joints were investigated. Results showed that sound interfacial bonding was realized between the coating layer and the Al alloy substrate. Moreover, the two kinds of coating layers both exhibited good solderability at low-temperature. The bonding strength between the Ag-15%Ni coating layer and the Al alloy substrate was 40 MPa, and the shear strength of the soldering joint formed by the sprayed aluminum alloy substrate and T2 copper was 26 MPa. While, the Ni-5%Al/Ag-15%Ni composite coatings exhibited better bonding strength with the Al alloy substrate (42 MPa) and higher shear strength of the soldering joint (31 MPa) than the Ag-15%Ni single coating layer.
  • 苑博. 微带天线大面积钎焊技术研究[J]. 焊接技术, 2019, 48(4): 39 − 41,47. doi: 10.13846/j.cnki.cn12-1070/tg.2019.04.011

    Yuan Bo. Research on large-area brazing technology of microstrip antenna[J]. Welding Technology, 2019, 48(4): 39 − 41,47. doi: 10.13846/j.cnki.cn12-1070/tg.2019.04.011
    Zbigniew M, Ireneusz C, Tomasz W. Soldering of 7075 aluminum alloy using Ni-P and Cu-Cr electrodeposited interlayers[J]. Materials, 2020, 13(18): 4100. doi: 10.3390/ma13184100
    杨波, 田修波, 巩春志. 铝合金表面磁控溅射Cu膜的镀制及其低温钎焊性能研究[J]. 真空科学与技术学报, 2014, 34(2): 153 − 157. doi: 10.3969/j.issn.1672-7126.2014.02.11

    Yang Bo, Tian Xiubo, Gong Chunzhi. Low temperature soldering of Al alloy modified with sputtered and ion implanted Cu coatings[J]. Chinese Journal of Vacuum Sciense and Technology, 2014, 34(2): 153 − 157. doi: 10.3969/j.issn.1672-7126.2014.02.11
    Guo K, Liu Y, Gou G, et al. Electroplating and brazing joining of 5083 aluminum alloy to CFRP[J]. International Journal of Modern Physics B, 2019, 33(1-3): 1940044.
    皇倩. 铝合金表面高性能涂层的制备与性能研究[D]. 北京: 北京大学, 2019.

    Huang Qian. Preparation and properties of high-performance coating on aluminum alloy[D]. Beijing: Peking University, 2019.
    李文亚, 曹聪聪, 杨夏炜, 等. 冷喷涂复合加工制造技术及其应用[J]. 材料工程, 2019, 47(11): 53 − 63. doi: 10.11868/j.issn.1001-4381.2019.000262

    Li Wenya, Cao Congcong, Yang Xiawei, et al. Cold spraying hybrid processing technology and its application[J]. Journal of Materials Engineering, 2019, 47(11): 53 − 63. doi: 10.11868/j.issn.1001-4381.2019.000262
    聂海杰, 李红, 龙伟民, 等. 采用冷喷涂铜涂层做中间层的镁合金与钢共晶接触反应钎焊工艺及接头性能[J]. 焊接学报, 2016, 37(7): 83 − 87.

    Nie Haijie, Li Hong, Long Weimin, et al. Brazing process and jointproperties of eutectic contact reaction between magnesium alloyand steel using cold sprayed copper coating as the intermediatelayer[J]. Transactions of the China Welding Institution, 2016, 37(7): 83 − 87.
    Tomasz W, Paweł S, Leszek Ł, et al. Application of plasma sprayed Cu intermediate layers in the soldering process of graphite composite to 6060 aluminum alloy[J]. Materials, 2020, 13(22): 5114. doi: 10.3390/ma13225114
    刘正卫. 电弧喷涂锌铝涂层工艺参数优化及性能研究[D]. 广州: 广东工业大学, 2019.

    Liu Zhengwei. Study on process parameters and optimization andpropertis of arc spraying zinc-aluminium coating[D]. Guangzhou: Guangdong University of Technology, 2019.
    李长久. 热喷涂技术应用及研究进展与挑战[J]. 热喷涂技术, 2018, 10(4): 1 − 22. doi: 10.3969/j.issn.1674-7127.2018.04.001

    Li Changjiu. Applications, research progresses and future challenges of thermal spray technology[J]. Thermal Spray Technology, 2018, 10(4): 1 − 22. doi: 10.3969/j.issn.1674-7127.2018.04.001
    Li Q, Song P, Ji Q, et al. Microstructure and wear performance of arc-sprayed Al/316L stainless-steel composite coating[J]. Surface & Coatings Technology, 2019, 374: 189 − 200.
    Kim J-K, Xavier F-A, Kim D-E. Tribological properties of twin wire arc spray coated aluminum cylinder liner[J]. Materials & Design, 2015, 84: 231 − 237.
    Naimi A, Yousfi H, Trari M. Microstructure and corrosion resistance of molybdenum and aluminum coatings thermally sprayed on 7075-T6 aluminum alloy[J]. Protection of Metals and Physical Chemistry of Surfaces, 2012, 48(5): 557 − 562. doi: 10.1134/S2070205112050061
    陈永雄, 梁秀兵, 程江波, 等. 异质双丝电弧喷涂制备复合涂层的工艺优化[J]. 焊接学报, 2019, 40(2): 38 − 41.

    Chen Yongxiong, Liang Xiubing, Cheng Jiangbo, et al. Process optimization of a hybrid twin-wire arc sprayed composite coating[J]. Transactions of the China Welding Institution, 2019, 40(2): 38 − 41.
    吴铭方, 司乃潮, 陈健. 铝/镀银层/钢的扩散钎焊及界面化合物的生长行为[J]. 中国有色金属学报, 2010, 20(6): 1209 − 1213. doi: 10.19476/j.ysxb.1004.0609.2010.06.027

    Wu Mingfang, Si Naichao, Chen Jian. Diffusion brazing of Al/Ag plating layer/steel and growth behavior of interface compound[J]. The Chinese Journal of Nonferrous Metals, 2010, 20(6): 1209 − 1213. doi: 10.19476/j.ysxb.1004.0609.2010.06.027
    Luo X, Smith G M, Sampath S. On the interplay between adhesion strength and tensile properties of thermal spray coated laminates—Part I: high velocity thermal spray coatings[J]. Journal of Thermal Spray Technology, 2018, 27(3): 296 − 307. doi: 10.1007/s11666-018-0695-1
    Wang J X, Wang G X, Liu J S, et al. Microstructure of Ni–Al powder and Ni–Al composite coatings prepared by twin-wire arc spraying[J]. International Journal of Minerals Metallurgy and Materials, 2016, 23(7): 810 − 818. doi: 10.1007/s12613-016-1295-z
    Wang J X, Liu J S, Zhang L Y, et al. Microstructure and mechanical properties of twin-wire arc sprayed Ni-Al composite coatings on 6061-T6 aluminum alloy sheet[J]. International Journal of Minerals Metallurgy and Materials, 2014, 21(5): 469 − 478. doi: 10.1007/s12613-014-0931-8
    Li J F, Agyakwa P A, Johnson C M. Kinetics of Ag3Sn growth in Ag-Sn-Ag system during transient liquid phase soldering process[J]. Acta Materialia, 2010, 58(9): 3429 − 3443. doi: 10.1016/j.actamat.2010.02.018
  • Related Articles

    [1]LI Zhao, LIU Yang, ZHANG Hao, SUN Fenglian. Bonding strength and plasticity of multiscale composite nanosilver paste for low temperature sintering[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(10): 106-110. DOI: 10.12073/j.hjxb.2019400271
    [2]LI Haixin, WEI Hongmei, HE Peng, FENG Jicai. Interfacial microstructure and bonding strength of diffusion bonded TiAl/Ti/Nb/GH99 alloy joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2012, (9): 9-12.
    [3]LI Haixin, LIN Tiesong, HE Peng, WEI Hongmei, FENG Jicai. Effect of holding time on interface structure and bonding strength of diffusion bonding joint of TiAl and Ni-based alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2012, (6): 43-46.
    [4]HE Peng, YANG Xiujuan, FENG Jicai, LIU Hong. Effects of holding time on interface structure and bonding strength of brazed joint of hydrogenated TC4 titanium alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (2): 1-4.
    [5]WANG Fu-liang, LI Jun-hui, HAN Lei, ZHONG Jue. Effect of bonding time on thick aluminum wire wedge bonding strength[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2006, (5): 47-51.
    [6]QIU Chang-jun, ZHOU Wei, HE Bin, FAN Xiang-fang. Study and finite element method analysis for bond strength of high-strength coating[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2006, (4): 105-107.
    [7]FENG Ji-cai, JING Xiang-meng, ZHANG Li-xia, LIU Hong. Interface structure and bonding strength of brazed joint of TiC cermet/steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2006, (1): 5-8.
    [8]LONG Zhi-li, HAN lei, WU Yun-xin, ZHOU Hong-quan. Effect of different temperature on strength of thermosonic bonding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2005, (8): 23-26,38.
    [9]ZOU Jia-sheng, XU Zhi-rong, ZHAO Qi-zhang, CHEN Zheng. Bonding strength of double partial transient liquid phase bonding with Si3N4/Ti/Cu/Ni/Cu/Ti/Si3N4[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2005, (2): 41-44.
    [10]Liu Huijie, Feng Jicai, Qian Yiyu. Interface Structures and Bonding Strength of SiC/TiAl Joints in Diffusion Bonding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1999, (3): 170-174.
  • Cited by

    Periodical cited type(0)

    Other cited types(1)

Catalog

    Article views (314) PDF downloads (74) Cited by(1)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return