Advanced Search
LIU Liming, YANG Huanyu, XU Xinkun. Study on low power laser induced twin arc high-efficiency welding TA2 medium-thick plate[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(1): 1-7. DOI: 10.12073/j.hjxb.20211114001
Citation: LIU Liming, YANG Huanyu, XU Xinkun. Study on low power laser induced twin arc high-efficiency welding TA2 medium-thick plate[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(1): 1-7. DOI: 10.12073/j.hjxb.20211114001

Study on low power laser induced twin arc high-efficiency welding TA2 medium-thick plate

More Information
  • Received Date: November 13, 2021
  • Available Online: December 14, 2022
  • The high-efficiency welding of 6 mm TA2 pure titanium plate was realized by using low power pulsed laser induced twin TIG hybrid welding heat source (LITTW). Based on the dynamic behavior of Ti particles, the effect of laser pulse on arc plasma was studied. The results show that the arc energy of LITTW is more concentrated than that of laser induced single TIG welding (LISTW). The welding energy consumption is only 50.9% of that of LISTW, but the welding speed is 2.3 times of that of LISTW. After the laser pulse action, there is a recovery time for the arc plasma to recover from the energy concentration state to the original arc shape. Under the experimental conditions, the recovery time of LITTW is 6.5 ms, which is 3 ms longer than that of LISTW. The stable keyhole morphology in LITTW provides conditions for the continuous transfer of Ti particles to arc plasma and prolongs the recovery time of plasma.
  • 孔谅, 周洋, 王敏, 等. TA2薄板电弧辅助激光高速焊接的焊缝成形稳定性[J]. 机械工程学报, 2021, 57(10): 137 − 147. doi: 10.3901/JME.2021.10.137

    Kong Liang, Zhou Yang, Wang Min, et al. Robustness of weld appearance on high-speed arc-assisted laser welding process on titanium sheet[J]. Journal of Mechanical Engineering, 2021, 57(10): 137 − 147. doi: 10.3901/JME.2021.10.137
    赵旭, 梁丹莹, 张聪惠, 等. 表面强化处理对工业纯钛焊接接头电化学耐腐蚀性能的影响[J]. 稀有金属材料与工程, 2020, 49(10): 3510 − 3518.

    Zhao Xu, Liang Danying, Zhang Conghui, et al. Effect of surface strengthening treatment on electrochemical corrosion resistance of commercially pure titanium welded joints[J]. Rare Metal Materials and Engineering, 2020, 49(10): 3510 − 3518.
    张建勋, 董丽娜, 张林杰, 等. 钛合金TIG焊接头晶粒尺寸非线性梯度特征[J]. 焊接学报, 2012, 33(12): 1 − 4.

    Zhang Jianxun, Dong Lina, Zhang Linjie, et al. Nonlinear gradient features of grain size in TIG welded joint for titanium alloy[J]. Transactions of The China Welding Institution, 2012, 33(12): 1 − 4.
    于冰冰, 陈志勇, 赵子博, 等. TC17钛合金电子束焊接接头的显微组织与力学性能研究[J]. 金属学报, 2016, 52(7): 831 − 841.

    Yu Bingbing, Chen Zhiyong, Zhao Zibo, et al. Microstructure and mechanical properties of electron beam weldment of titanium alloy TC17[J]. Acta Metallurgica Sinica, 2016, 52(7): 831 − 841.
    Akman E, Demir A, Canel T, et al. Laser welding of Ti6Al4V titanium alloys[J]. Journal of Materials Processing Technology, 2009, 209(8): 3705 − 3713. doi: 10.1016/j.jmatprotec.2008.08.026
    Chen S, Luo S, Yu H, et al. Effect of beam defocusing on porosity formation in laser-MIG hybrid welded TA2 titanium alloy joints[J]. Journal of Manufacturing Processes, 2020, 58(10): 1221 − 1231.
    Li R, Li Z, Zhu Y, et al. A comparative study of laser beam welding and laser-MIG hybrid welding of Ti-Al-Zr-Fe titanium alloy[J]. Materials Science and Engineering:A, 2011, 528(3): 1138 − 1142. doi: 10.1016/j.msea.2010.09.084
    刘黎明, 史吉鹏, 王红阳. 低功率激光诱导电弧复合焊接钛合金薄板工艺研究[J]. 机械工程学报, 2016, 52(18): 38 − 43.

    Liu Liming, Shi Jipeng, Wang Hongyang. Research on the low power laser induced arc hybrid welding of titanium alloy thinsheet[J]. Journal of Mechanical Engineering, 2016, 52(18): 38 − 43.
    袁胜涛, 李陈宾, 刘黎明. 低功率YAG激光-TIG电弧复合焊接镁合金薄板工艺[J]. 焊接学报, 2012, 33(9): 53 − 56.

    Yuan Shengtao, Li Chenbin, Liu Liming. Low power laser-TIG arc hybrid welding of thin magnesium alloy plate[J]. Transactions of The China Welding Institution, 2012, 33(9): 53 − 56.
    Liu L, Shi J, Hou Z, et al. Effect of distance between the heat sources on the molten pool stability and burn-through during the pulse laser-GTA hybrid welding process[J]. Journal of Manufacturing Processes, 2018, 34: 697 − 705. doi: 10.1016/j.jmapro.2018.06.038
    Liu L, Xu X, Zhu Y. Study on synchronous induction of arc plasma by laser in laser-double TIG hybrid welding[J]. Optics and Lasers in Engineering, 2020, 133: 106130. doi: 10.1016/j.optlaseng.2020.106130
    Griem H. Spectral line broadening by plasma[M]. New York: Academic Press, 1974.
    Sabbaghzadeh J, Dadras S, Torkamany M J. (2007) Comparison of pulsed Nd :  YAG laser welding qualitative features with plasma plume thermal characteristics[J]. Journal of Physics D:Applied Physics, 2007, 40(4): 1047 − 1051. doi: 10.1088/0022-3727/40/4/019
    Steen W, Mazumder J. Laser material processing[M]. Berlin: Springer-Verlag London Ltd, 2010.
    于英飞, 朱志明, 孙博文, 等. 焊接电弧图像的边缘检测及其批处理算法[J]. 焊接学报, 2018, 39(11): 017 − 021. doi: 10.12073/j.hjxb.2018390265

    Yu Yingfei, Zhu Zhiming, Sun Bowen, et al. Edges detection and batch algorithm for welding arc images[J]. Transactions of The China Welding Institution, 2018, 39(11): 017 − 021. doi: 10.12073/j.hjxb.2018390265
  • Related Articles

    [1]JIANG Fan, FANG Shitong, ZHANG Guokai, CHEN Shujun, LI Tianming, XU Bin. Front-side monitoring technology for back-side keyhole state in VPPAW[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2025, 46(1): 8-14. DOI: 10.12073/j.hjxb.20231107002
    [2]XIN Jianwen, WU Dongsheng, LI Fang, ZHANG Yuelong, WUANG Huan, HUA Xueming. Formation mechanism of elongated cavities in keyhole plasma arc welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(12): 54-61. DOI: 10.12073/j.hjxb.20210414003
    [3]DENG Lipeng, KE Liming, LIU Jinhe. Essence of the technology of filling keyhole based on resistance welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(3): 50-53. DOI: 10.12073/j.hjxb.20190708005
    [4]HAN Xiaohui, MA Yin, MA Guolong, YANG Haifeng, XU Liang. Dynamic characteristic analysis of keyhole in double beam laser welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(2): 93-96. DOI: 10.12073/j.hzxb.20190811002
    [5]LI Bin, ZHAO Zeyang, WANG Chunming, HU Xiyuan, GUO Lian. Behaviors of plasma and keyhole in laser welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2015, 36(2): 87-91.
    [6]CHEN Minghua, LI Chenbin, LIU Liming. Coupling behavior of plasmas during laser-arc hybrid welding process[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2014, 35(10): 53-56.
    [7]HUANG Yongxian, HAN Bing, LÜ Shixiong, FENG Jicai, LENG Jinsong, CHEN Xiaobo. Filling friction stir welding for repairing keyhole based on principle of solid state joining[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2012, (3): 5-8.
    [8]WANG Renping, LEI Yongping, SHI Yaowu. Numerical simulation of keyhole formation process in laser deep penetration welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2010, (11): 38-40.
    [9]YIN Feng-liang, HU Sheng-sun, ZHENG Zhen-tai, ZHU Yu-xin. Stability control of keyhole in keyhole plasma welding using plasma spring[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2006, (7): 21-24.
    [10]ZHOU Qi, LIU Fang-jun. The Review on the Keyhole Dynamics of the Electron Beam Deep Penetration Welding Process[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2001, (3): 88-92.
  • Cited by

    Periodical cited type(6)

    1. 王程明,白丽娟,宋月,刘丽君,谷秀锐,李惠敏. 海洋平台用EH36钢的SHCCT曲线测定与分析. 金属热处理. 2025(01): 58-62 .
    2. 肖世俊,李霄,张正华,薛海洋. 长期服役15Cr1Mo1V补焊细晶区组织及硬度与冷却速度的关系. 焊接技术. 2025(03): 35-39+146 .
    3. 向婷,方振龙,马强,曹增奎,张健. 实-药芯多丝电弧复合焊中药芯焊丝位置对焊接稳定性的影响. 材料热处理学报. 2024(06): 193-201 .
    4. 张朋彦,张明,周磊磊,梁恩荣,朱志刚. 22MnB5和QStE550TM的异种钢接头碳迁移现象分析. 钢铁. 2024(10): 86-95 .
    5. 司广全,李太江,李巍,孙琦. 水电工程1000 MPa等级超高强钢埋弧自动焊接头显微组织及力学性能研究. 热力发电. 2024(11): 47-55 .
    6. 张奎良,李景,李海军,吴海龙,甘洪丰. 1000MPa级水电钢SH-CCT曲线测定与冷裂敏感性分析. 大电机技术. 2024(05): 81-87 .

    Other cited types(1)

Catalog

    Article views (292) PDF downloads (45) Cited by(7)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return