Advanced Search
YE Shuo, DI Hongshuang, ZHANG Zhenghui, ZHANG Jin, WANG Xiaonan. Effect of high carbon steel foil on microstructure and mechanical properties of laser welded Al-Si coated press-hardened steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(10): 106-112. DOI: 10.12073/j.hjxb.20211027004
Citation: YE Shuo, DI Hongshuang, ZHANG Zhenghui, ZHANG Jin, WANG Xiaonan. Effect of high carbon steel foil on microstructure and mechanical properties of laser welded Al-Si coated press-hardened steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(10): 106-112. DOI: 10.12073/j.hjxb.20211027004

Effect of high carbon steel foil on microstructure and mechanical properties of laser welded Al-Si coated press-hardened steel

More Information
  • Received Date: October 26, 2021
  • Available Online: July 26, 2022
  • In this article, laser welding experiment of 1.5 mm thick Al-Si coated hot formed steel was carried out with 45 steel foil as interlayer by CWX3000 fiber laser. The effect of the carbon content of fusion zone on the microstructure and mechanical properties of the welded joint was studied. The results showed that after adding foil, the carbon content of fusion zone increased, the austenite phase zone was expanded, the δ-ferrite fraction of fusion zone decreased from 17.3% to 4.5%, the average hardness of fusion zone increased from 425HV to 557HV, the tensile strength of welded joint increased from 980MPa to 1280MPa, and the cupping value increased from 1.7mm to 3.2mm. Tensile strength and formability are both improved.
  • Karbasian H, Tekkaya A E. A review on hot stamping[J]. Journal of Materials Processing Technology, 2010, 210(15): 2103 − 2118. doi: 10.1016/j.jmatprotec.2010.07.019
    Fan D W, Cooman B C D. State-of-the-knowledge on coating systems for hot stamped parts[J]. Steel Research International, 2012, 83(5): 412 − 433. doi: 10.1002/srin.201100292
    Ehling W, Cretteur L, Pic A. Development of a laser decoating process for fully functional Al-Si coated press hardened steel laser welded blank solutions [C]//Munich, Germany: 5th International WLT-Conference on Lasers in Manufacturing.
    Wang X N, Yi G, Sun Q, et al. Study on δ-ferrite evolution and properties of laser fusion zone during post-weld heat treatment on Al-Si coated press-hardened steel[J]. Journal of Materials Research and Technology, 2020, 9(3): 5712 − 5722. doi: 10.1016/j.jmrt.2020.03.096
    Vierstraete R, Ehling W, Pinard F, et al. Laser ablation for hardening laser weloed steel blanks.[J]. Industrial Laser Solutions, 2010(2): 6 − 11.
    Kang M, Kim C, Bae S M. Laser tailor-welded blanks for hot-press-forming steel with arc pretreatment[J]. International Journal of Automotive Technology, 2015, 16(2): 279 − 283. doi: 10.1007/s12239-015-0029-y
    Lin W H, Li F, Hua X M, et al. Effect of filler wire on laser welded blanks of Al-Si-coated 22MnB5 steel[J]. Journal of Materials Processing Technology, 2018, 259: 195 − 205. doi: 10.1016/j.jmatprotec.2018.04.041
    Chen X, Wang X, Sun Q, et al. Improving the mechanical properties of PHS laser welded joints by adding Ni foil to suppress δ-ferrite[J]. Journal of Materials Research and Technology, 2020, 9(3): 5184 − 5193. doi: 10.1016/j.jmrt.2020.03.035
    Khan M S, Razmpoosh M H, Macwan A, et al. Optimizing Weld Morphology and Mechanical Properties of Laser Welded Al-Si Coated 22MnB5 by Surface Application of Colloidal Graphite[J]. Journal of Materials Processing Technology, 2021, 293: 117093. doi: 10.1016/j.jmatprotec.2021.117093
    陈靖雨, 王晓南, 吕凡等. 激光束摆动焊接低碳钢焊接接头的组织和力学性能[J]. 中国激光, 2020, 47(3): 143 − 150.

    Chen Jingyu, Wang Xiaonan, Lü Fan, et al. Microstructure and Mechanical Properties of Weled Joints of Low Carbon Steels Welded by Laser Beam Oscillating Welding[J]. Chinese Journal of Lasers, 2020, 47(3): 143 − 150.
    Sun Qian, Di Hongshuang, Wang Xiaonan, et al. Suppression of δ-ferrite formation on Al-Si coated press-hardened steel during laser welding[J]. Materials Letters, 2019, 245: 106 − 109. doi: 10.1016/j.matlet.2019.02.111
    Wang X N, Chen X M, Sun Q, et al. Formation mechanism of δ-ferrite and metallurgy reaction in molten pool during press-hardened steel laser welding[J]. Materials Letters, 2017, 206: 143 − 145. doi: 10.1016/j.matlet.2017.07.008
    Valeria L de la Concepción, Hernán N Lorusso, Hernán G Svoboda, et al. Effect of carbon content on microstructure and mechanical properties of dual phase steels[J]. Procedia Materials Science, 2015, 8: 1047 − 1056. doi: 10.1016/j.mspro.2015.04.167
    张泽成, 赵成志, 张贺新等. 不同铝质量分数耐热钢的显微组织及冲击性能[J]. 钢铁, 2015(6): 69 − 74. doi: 10.13228/j.boyuan.issn0449-749x.20140571

    Zhang Zecheng, Zhao Chengzhi, Zhang Hexin, et al. Effect of aluminum contents on δ-ferrite content and impact properties of heat resistant steel[J]. Iron and Steel, 2015(6): 69 − 74. doi: 10.13228/j.boyuan.issn0449-749x.20140571
    陈夏明, 王晓南, 孙茜等. Al-Si镀层22MnB5钢激光焊接接头组织和性能的影响[J]. 机械工程学报, 2018, 54(6): 162 − 167. doi: 10.3901/JME.2018.06.162

    Chen Xiaming, Wang Xiaonan, Sun Qian, et al. Effect of Al-Si Coating on Microstructure and properties of 22MnB5 Steel Laser Welded Joint[J]. Journal of Mechanical Engineering, 2018, 54(6): 162 − 167. doi: 10.3901/JME.2018.06.162
  • Related Articles

    [1]XU Lianyong, LONG Zhiping, ZHAO Lei, HAN Yongdian, PENG Chentao. Effect of stress concentration at weld toes on combined high and low cycle fatigue of EH36 steel welded joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(7): 1-9. DOI: 10.12073/j.hjxb.20230619003
    [2]LIU Xue, ZHONG Shifang, XU Lianyong, ZHAO Lei, HAN Yongdian. Corrosion fatigue behavior of X65 pipeline steel welded joints under different stress ranges[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(7): 24-31, 78. DOI: 10.12073/j.hjxb.20220830001
    [3]HE Bolin, YE Bin, DENG Haipeng, LI Li, WEI Kang. Very high cycle fatigue properties of SMA490BW steel welded joints for train bogie[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(2): 31-37. DOI: 10.12073/j.hjxb.2019400037
    [4]DING Sansan, LI Qiang, GOU Guoqing. Effect of residual stress on fatigue behavior of welded joint of A7N01 aluminum alloy for high-speed trcion[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(9): 23-28.
    [5]XUE Bin, ZHANG Tianhui, XU Renping, WANG Shiyue. Effect of residual compressive stress field on fatigue crack growth of B780CF steel welded joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(6): 103-108.
    [6]YIN Chengjiang, SONG Tianmin, LI Wanli. Effect of high-temperature welding on fatigue life of 2.25Cr1Mo steel joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2015, 36(4): 106-108.
    [7]ZHAO Dongsheng, WU Guoqiang, LIU Yujun, LIU Wen, JI Zhuoshang. Effect of welding residual stress on fatigue life of Invar steel welded joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2013, (4): 93-95,108.
    [8]XU Jun, ZHANG Yansong, ZHU Ping, CHEN Guanlong. Fatigue life analysis of lap-shear spot weld of dual phase steels[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (5): 45-48.
    [9]WANG Wen-xian, HUO Li-xing, ZHANG Yu-feng, WANG Dong-po. Effect of Transformation Temperature on Improving the Fatigue Strength of Welded Joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2002, (3): 15-18.
    [10]Ling Chao, Zheng Xiulin. Overloading effect upon fatigue life of 16Mn steel butt welds[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1991, (4): 247-251.

Catalog

    Article views (217) PDF downloads (36) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return