Citation: | YE Shuo, DI Hongshuang, ZHANG Zhenghui, ZHANG Jin, WANG Xiaonan. Effect of high carbon steel foil on microstructure and mechanical properties of laser welded Al-Si coated press-hardened steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(10): 106-112. DOI: 10.12073/j.hjxb.20211027004 |
Karbasian H, Tekkaya A E. A review on hot stamping[J]. Journal of Materials Processing Technology, 2010, 210(15): 2103 − 2118. doi: 10.1016/j.jmatprotec.2010.07.019
|
Fan D W, Cooman B C D. State-of-the-knowledge on coating systems for hot stamped parts[J]. Steel Research International, 2012, 83(5): 412 − 433. doi: 10.1002/srin.201100292
|
Ehling W, Cretteur L, Pic A. Development of a laser decoating process for fully functional Al-Si coated press hardened steel laser welded blank solutions [C]//Munich, Germany: 5th International WLT-Conference on Lasers in Manufacturing.
|
Wang X N, Yi G, Sun Q, et al. Study on δ-ferrite evolution and properties of laser fusion zone during post-weld heat treatment on Al-Si coated press-hardened steel[J]. Journal of Materials Research and Technology, 2020, 9(3): 5712 − 5722. doi: 10.1016/j.jmrt.2020.03.096
|
Vierstraete R, Ehling W, Pinard F, et al. Laser ablation for hardening laser weloed steel blanks.[J]. Industrial Laser Solutions, 2010(2): 6 − 11.
|
Kang M, Kim C, Bae S M. Laser tailor-welded blanks for hot-press-forming steel with arc pretreatment[J]. International Journal of Automotive Technology, 2015, 16(2): 279 − 283. doi: 10.1007/s12239-015-0029-y
|
Lin W H, Li F, Hua X M, et al. Effect of filler wire on laser welded blanks of Al-Si-coated 22MnB5 steel[J]. Journal of Materials Processing Technology, 2018, 259: 195 − 205. doi: 10.1016/j.jmatprotec.2018.04.041
|
Chen X, Wang X, Sun Q, et al. Improving the mechanical properties of PHS laser welded joints by adding Ni foil to suppress δ-ferrite[J]. Journal of Materials Research and Technology, 2020, 9(3): 5184 − 5193. doi: 10.1016/j.jmrt.2020.03.035
|
Khan M S, Razmpoosh M H, Macwan A, et al. Optimizing Weld Morphology and Mechanical Properties of Laser Welded Al-Si Coated 22MnB5 by Surface Application of Colloidal Graphite[J]. Journal of Materials Processing Technology, 2021, 293: 117093. doi: 10.1016/j.jmatprotec.2021.117093
|
陈靖雨, 王晓南, 吕凡等. 激光束摆动焊接低碳钢焊接接头的组织和力学性能[J]. 中国激光, 2020, 47(3): 143 − 150.
Chen Jingyu, Wang Xiaonan, Lü Fan, et al. Microstructure and Mechanical Properties of Weled Joints of Low Carbon Steels Welded by Laser Beam Oscillating Welding[J]. Chinese Journal of Lasers, 2020, 47(3): 143 − 150.
|
Sun Qian, Di Hongshuang, Wang Xiaonan, et al. Suppression of δ-ferrite formation on Al-Si coated press-hardened steel during laser welding[J]. Materials Letters, 2019, 245: 106 − 109. doi: 10.1016/j.matlet.2019.02.111
|
Wang X N, Chen X M, Sun Q, et al. Formation mechanism of δ-ferrite and metallurgy reaction in molten pool during press-hardened steel laser welding[J]. Materials Letters, 2017, 206: 143 − 145. doi: 10.1016/j.matlet.2017.07.008
|
Valeria L de la Concepción, Hernán N Lorusso, Hernán G Svoboda, et al. Effect of carbon content on microstructure and mechanical properties of dual phase steels[J]. Procedia Materials Science, 2015, 8: 1047 − 1056. doi: 10.1016/j.mspro.2015.04.167
|
张泽成, 赵成志, 张贺新等. 不同铝质量分数耐热钢的显微组织及冲击性能[J]. 钢铁, 2015(6): 69 − 74. doi: 10.13228/j.boyuan.issn0449-749x.20140571
Zhang Zecheng, Zhao Chengzhi, Zhang Hexin, et al. Effect of aluminum contents on δ-ferrite content and impact properties of heat resistant steel[J]. Iron and Steel, 2015(6): 69 − 74. doi: 10.13228/j.boyuan.issn0449-749x.20140571
|
陈夏明, 王晓南, 孙茜等. Al-Si镀层22MnB5钢激光焊接接头组织和性能的影响[J]. 机械工程学报, 2018, 54(6): 162 − 167. doi: 10.3901/JME.2018.06.162
Chen Xiaming, Wang Xiaonan, Sun Qian, et al. Effect of Al-Si Coating on Microstructure and properties of 22MnB5 Steel Laser Welded Joint[J]. Journal of Mechanical Engineering, 2018, 54(6): 162 − 167. doi: 10.3901/JME.2018.06.162
|
[1] | XU Lianyong, LONG Zhiping, ZHAO Lei, HAN Yongdian, PENG Chentao. Effect of stress concentration at weld toes on combined high and low cycle fatigue of EH36 steel welded joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(7): 1-9. DOI: 10.12073/j.hjxb.20230619003 |
[2] | LIU Xue, ZHONG Shifang, XU Lianyong, ZHAO Lei, HAN Yongdian. Corrosion fatigue behavior of X65 pipeline steel welded joints under different stress ranges[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(7): 24-31, 78. DOI: 10.12073/j.hjxb.20220830001 |
[3] | HE Bolin, YE Bin, DENG Haipeng, LI Li, WEI Kang. Very high cycle fatigue properties of SMA490BW steel welded joints for train bogie[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(2): 31-37. DOI: 10.12073/j.hjxb.2019400037 |
[4] | DING Sansan, LI Qiang, GOU Guoqing. Effect of residual stress on fatigue behavior of welded joint of A7N01 aluminum alloy for high-speed trcion[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(9): 23-28. |
[5] | XUE Bin, ZHANG Tianhui, XU Renping, WANG Shiyue. Effect of residual compressive stress field on fatigue crack growth of B780CF steel welded joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(6): 103-108. |
[6] | YIN Chengjiang, SONG Tianmin, LI Wanli. Effect of high-temperature welding on fatigue life of 2.25Cr1Mo steel joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2015, 36(4): 106-108. |
[7] | ZHAO Dongsheng, WU Guoqiang, LIU Yujun, LIU Wen, JI Zhuoshang. Effect of welding residual stress on fatigue life of Invar steel welded joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2013, (4): 93-95,108. |
[8] | XU Jun, ZHANG Yansong, ZHU Ping, CHEN Guanlong. Fatigue life analysis of lap-shear spot weld of dual phase steels[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (5): 45-48. |
[9] | WANG Wen-xian, HUO Li-xing, ZHANG Yu-feng, WANG Dong-po. Effect of Transformation Temperature on Improving the Fatigue Strength of Welded Joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2002, (3): 15-18. |
[10] | Ling Chao, Zheng Xiulin. Overloading effect upon fatigue life of 16Mn steel butt welds[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1991, (4): 247-251. |