Advanced Search
DAI Yibo, FANG Weiping, PENG Hanlin, HU Yongjun, YI Yaoyong, YI Peng. Effect of pre-weld heat treatment on the microstructure and mechanical properties of electron beam welded 440C stainless steel joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(10): 63-70. DOI: 10.12073/j.hjxb.20211020001
Citation: DAI Yibo, FANG Weiping, PENG Hanlin, HU Yongjun, YI Yaoyong, YI Peng. Effect of pre-weld heat treatment on the microstructure and mechanical properties of electron beam welded 440C stainless steel joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(10): 63-70. DOI: 10.12073/j.hjxb.20211020001

Effect of pre-weld heat treatment on the microstructure and mechanical properties of electron beam welded 440C stainless steel joint

More Information
  • Received Date: October 19, 2021
  • Available Online: July 06, 2022
  • The effects of pre-weld heat treatment on microstructure and mechanical properties of electron beam welded 440C stainless steel joint were observed and studied, including annealing as well as quenching and tempering. The characteristics of structure change, joint tension and hardness distribution in the two states are analyzed. The results show that the electron beam weld has a good shape without any microcracks. The microstructure located at the weld consists of martensite and retained austenite, showing a non-equilibrium solidification microstructure, carbon and alloying elements exist in the weld structure in solid solution, and the hardness reaches 398 HV. After quenching and tempering heat treatment before welding, the base metal matrix transforms from ferrite into tempered martensite and retained austenite, and at the same time the carbide part is solid-dissolved into the matrix structure, which increases the matrix structure hardness by 60%. Compared with the annealed state before welding, after electron beam welding, the tensile strength of the welded joint is increased by 20%, and the hardness of the welded heat-affected zone is increased by 35%, but the plastic deformation ability of the joint is reduced, and the fracture occurs in the heat-affected zone.
  • Bush R, Gill J, Teakell J. Heat treatment optimization and fabrication of a 440C stainless steel knife[J]. JOM, 2016, 68(12): 3167 − 3173. doi: 10.1007/s11837-016-2117-5
    Prieto G, Mandri A, Rabbia G, et al. Rolling contact fatigue resistance of cryogenically treated AISI 440C steel[J]. Journal of Materials Engineering and Performance, 2020, 29(11): 2216 − 2226.
    季文彬. 梯度功能金属陶瓷复合刀具的扩散烧结制备及其切削性能研究[D]. 济南, 山东大学, 2017.

    Ji Wenbin. Diffusion sintering fabrication and cutting performance functional gradient cermet composite cutting tools[D].Jinan, Shandong University, 2017.
    康超, 郭秀乔, 唐雪明, 等. 冷处理温度对440C不锈钢组织和硬度的影响[J]. 热加工工艺, 2017(24): 211 − 212.

    Kang Chao, Guo Xiuqiao, Tang Xueming, et al. Effects of cold treatment temperature on microstructure and hardness of 440C stainless steel[J]. Hot Working Technology, 2017(24): 211 − 212.
    胡飞, 刘利国, 陈未来, 等. AISI440C不锈钢QPQ盐浴复合表面处理及其耐磨性研究[J]. 热加工工艺, 2021(18): 107 − 110.

    Hu Fei, Liu Liguo, Chen Weilai, et al. Study on QPQ salt bath composite surface treatment and wear resistance of AISI440C stainless steel[J]. Hot Working Technology, 2021(18): 107 − 110.
    Yang J R, Yu T H, Wang C H. Martensitic transformations in AISI 440C stainless steel[J]. Materials Science and Engineering A, 2006, 438(11): 276 − 280.
    Salleh S H, Omar M Z, Syarif J, et al. Investigation of microstructures and properties of 440C martensitic stainless steel[J]. International Journal of Mechanical and Materials Engineering, 2009, 4(2): 123 − 126.
    Hetzner D W, Geertruyden W V. Crystallography and metallography of carbides in high alloy steels[J]. Materials Characterization, 2008, 59(7): 825 − 841. doi: 10.1016/j.matchar.2007.07.005
    Sokkalingam R, Mastanaiah P, Muthupandi V, et al. Electron-beam welding of high-entropy alloy and stainless steel: microstructure and mechanical properties[J]. Materials and Manufacturing Processes, 2020, 35(16): 1885 − 1894. doi: 10.1080/10426914.2020.1802045
    Chen G, Yin Q, Zhang G, et al. Underlying causes of strength weakening of electron beam welded joints of high-speed steels[J]. Journal of Manufacturing Processes, 2019, 39: 250 − 258. doi: 10.1016/j.jmapro.2019.01.047
    Jin J, Gao R, Peng H, et al. Rapid solidification microstructure and carbide precipitation behavior in electron beam melted high-speed steel[J]. Metallurgical and Materials Transactions A, 2020, 51: 2411 − 2429. doi: 10.1007/s11661-020-05661-z
    Wang H, Li J, Shi C B, et al. Evolution of carbides in H13 steel in heat treatment process[J]. Materials Transactions, 2017, 58(2): 152 − 156. doi: 10.2320/matertrans.M2016268
    Jin J, Liu F B, Chen Y B, et al. Surface carbon chemical states of ion implanted AISI 440C martensitic stainless steel[J]. Journal of Iron & Steel Research International, 2015, 22(6): 513 − 518.
    Lin Y T, Wang D P, Wang M C, et al. Effect of different pre-and post-weld heat treatments on microstructures and mechanical properties of variable polarity TIG welded AA2219 joints[J]. Science & Technology of Welding & Joining, 2015, 21(3): 234 − 241.
    张敏, 贾芳, 程康康, 等. 调质处理对G520钢焊接接头组织及性能的影响[J]. 金属学报, 2019, 55(11): 1379 − 1387.

    Zhang Min, Jia Fang, Cheng Kangkang, et al. Influence of quenching and tempering on microstructure and properties of welded joints of G520 martensitic steel[J]. Acta Metallurgica Sinica, 2019, 55(11): 1379 − 1387.
    张敏, 仝雄伟, 李洁, 等. 焊前和焊后调质处理下25Cr2Ni4MoV钢焊接接头的组织及性能[J]. 机械工程材料, 2021, 45(1): 34 − 40.

    Zhang Min, Tong Xiongwei, Li Jie, et al. Microstructure and properties of 25Cr2Ni4MoV steel welded joint under pre-welding and post-welding quenching and tempering treatment[J]. Materials For Mechanical Engineering, 2021, 45(1): 34 − 40.
    Huang K T, Chang S H, Hsieh P C. Microstructure, mechanical properties and corrosion behavior of NbC modified AISI 440C stainless steel by vacuum sintering and heat treatments[J]. Journal of Alloys and Compounds, 2017, 712: 760 − 767. doi: 10.1016/j.jallcom.2017.04.125
    Jalaja K, Manwatkar S K, Anand P, et al. Metallurgical analysis of surface distress on balls during the operation of AISI 440C ball bearings for satellite applications[J]. Engineering Failure Analysis, 2021, 124: 105376. doi: 10.1016/j.engfailanal.2021.105376
    Puli R, Ram G. Microstructures and properties of friction surfaced coatings in AISI 440C martensitic stainless steel[J]. Surface & Coatings Technology, 2012, 207: 310 − 318.
    Veerababu R, Prasad K S, Balamuralikrishnan R, et al. Austenite stability and M2C carbide decomposition in experimental secondary hardening ultra-high strength steels during high temperature austenitizing treatments[J]. Materials Characterization, 2018, 144: 191 − 204. doi: 10.1016/j.matchar.2018.07.013
    Krishna S C, Tharian K T, Chakravarthi K V A, et al. Heat treatment and thermo-mechanical treatment to modify carbide banding in AISI 440C steel: a case study[J]. Metallography, Microstructure, and Analysis, 2016, 5(2): 108 − 115. doi: 10.1007/s13632-016-0266-0
    Kawata H, Hayashi K, Wakabayashi C, et al. Martensite transformation start temperature during quench and austempering in Fe-8Ni-0.2 C alloys[J]. Metallurgical and Materials Transactions A, 2021, 52(4): 1395 − 1408. doi: 10.1007/s11661-021-06167-y
    Lo K H, Cheng F T, Kwok C T, et al. Effects of laser treatments on cavitation erosion and corrosion of AISI 440C martensitic stainless steel[J]. Materials Letters, 2004, 58(1-2): 88 − 93. doi: 10.1016/S0167-577X(03)00421-X
    Capdevila C, Caballero F G, García de Andrés C. Analysis of effect of alloying elements on martensite start temperature of steels[J]. Materials science and technology, 2003, 19(5): 581 − 586. doi: 10.1179/026708303225001902
    Syarif J, Yousuf M H, Sajuri Z, et al. Effect of partial solution treatment temperature on microstructure and tensile properties of 440C martensitic stainless steel[J]. Metals - Open Access Metallurgy Journal, 2020, 10(5): 1 − 14.
    Manwatkar S K, Bahrudheen A, Tiwari S B, et al. Failure analysis of AISI 440C steel ball screws used in the actuator system of a satellite launch vehicle[J]. Journal of Failure Analysis and Prevention, 2017, 17(3): 505 − 512. doi: 10.1007/s11668-017-0268-5
  • Related Articles

    [1]LIU Jinhao, LI Jiachen, ZHANG Liangliang, WU Baosheng, LI Peng, DONG Honggang. Microstructural evolution and corrosion property of Al-Mg alloy friction stir welding joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(10): 8-18. DOI: 10.12073/j.hjxb.20231011002
    [2]Fenggui LU, Dean DENG, Yaqi WANG, Chendong SHAO. Application and development of numerical simulation technology in laser welding process[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(8): 87-94. DOI: 10.12073/j.hjxb.20220430001
    [3]Rui MA, Linchuan LIU, Yajun WANG, Jie BAI, Caiwang TAN, Xiaoguo SONG. Effect of solution temperature on the microstructure evolution and mechanical properties of laser powder bed melting GH3536 alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(8): 73-79. DOI: 10.12073/j.hjxb.20220504002
    [4]YU Shurong, CHENG Nengdi, HUANG Jiankang, YU Xiaoquan, FAN Ding. Relationship between thermal process and microstructure during additive manufacturing of double-electrode gas metal arc welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(8): 1-6. DOI: 10.12073/j.hjxb.2019400200
    [5]LI Bingru, ZHOU Jianping, XU Yan, BAO Yang. Three-dimensional numerical simulation and analysis of temperature field in metal welding deposition prototyping[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(3): 42-46. DOI: 10.12073/j.hjxb.2018390065
    [6]WANG Xijing, WEI Xueling, ZHANG Liangliang. Microstructural evolution and mechanical properties of friction stir welded 6082-T6 aluminum alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(3): 1-5. DOI: 10.12073/j.hjxb.2018390057
    [7]CHENG Donghai, CHEN Long, CHEN Yiping, HU Dean. Microstructure evolution of electron beam welded 5A90 aluminum lithium alloy during superplastic deformation[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2017, 38(6): 29-32,36.
    [8]ZHANG Lei, LIU Changqing, YU Jingwei, HU Xihai, GONG Feng, JIN Guangri. Numerical analysis of microstructure evolution of coarse grained zone in sidewall during narrow gap submerged arc welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(4): 103-106.
    [9]CHENG Donghai, HUANG Jihua, CHEN Yiping, HU Dean. Microstructure evolution characterization of superplastic deformation of titanium alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2012, (7): 89-92.
    [10]MA Rui, DONG Zhibo, WEI Yanhong, ZHAN Xiaohong. Simulation of solidification microstructure evolution in molten pool of nickel base alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2010, (7): 43-46.
  • Cited by

    Periodical cited type(1)

    1. 王志鹏,朱明亮,轩福贞. CrMoV与NiCrMoV异种钢焊接接头的高周疲劳性能及寿命模型. 焊接学报. 2024(07): 67-73 . 本站查看

    Other cited types(0)

Catalog

    Article views (298) PDF downloads (50) Cited by(1)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return