Citation: | DAI Yibo, FANG Weiping, PENG Hanlin, HU Yongjun, YI Yaoyong, YI Peng. Effect of pre-weld heat treatment on the microstructure and mechanical properties of electron beam welded 440C stainless steel joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(10): 63-70. DOI: 10.12073/j.hjxb.20211020001 |
Bush R, Gill J, Teakell J. Heat treatment optimization and fabrication of a 440C stainless steel knife[J]. JOM, 2016, 68(12): 3167 − 3173. doi: 10.1007/s11837-016-2117-5
|
Prieto G, Mandri A, Rabbia G, et al. Rolling contact fatigue resistance of cryogenically treated AISI 440C steel[J]. Journal of Materials Engineering and Performance, 2020, 29(11): 2216 − 2226.
|
季文彬. 梯度功能金属陶瓷复合刀具的扩散烧结制备及其切削性能研究[D]. 济南, 山东大学, 2017.
Ji Wenbin. Diffusion sintering fabrication and cutting performance functional gradient cermet composite cutting tools[D].Jinan, Shandong University, 2017.
|
康超, 郭秀乔, 唐雪明, 等. 冷处理温度对440C不锈钢组织和硬度的影响[J]. 热加工工艺, 2017(24): 211 − 212.
Kang Chao, Guo Xiuqiao, Tang Xueming, et al. Effects of cold treatment temperature on microstructure and hardness of 440C stainless steel[J]. Hot Working Technology, 2017(24): 211 − 212.
|
胡飞, 刘利国, 陈未来, 等. AISI440C不锈钢QPQ盐浴复合表面处理及其耐磨性研究[J]. 热加工工艺, 2021(18): 107 − 110.
Hu Fei, Liu Liguo, Chen Weilai, et al. Study on QPQ salt bath composite surface treatment and wear resistance of AISI440C stainless steel[J]. Hot Working Technology, 2021(18): 107 − 110.
|
Yang J R, Yu T H, Wang C H. Martensitic transformations in AISI 440C stainless steel[J]. Materials Science and Engineering A, 2006, 438(11): 276 − 280.
|
Salleh S H, Omar M Z, Syarif J, et al. Investigation of microstructures and properties of 440C martensitic stainless steel[J]. International Journal of Mechanical and Materials Engineering, 2009, 4(2): 123 − 126.
|
Hetzner D W, Geertruyden W V. Crystallography and metallography of carbides in high alloy steels[J]. Materials Characterization, 2008, 59(7): 825 − 841. doi: 10.1016/j.matchar.2007.07.005
|
Sokkalingam R, Mastanaiah P, Muthupandi V, et al. Electron-beam welding of high-entropy alloy and stainless steel: microstructure and mechanical properties[J]. Materials and Manufacturing Processes, 2020, 35(16): 1885 − 1894. doi: 10.1080/10426914.2020.1802045
|
Chen G, Yin Q, Zhang G, et al. Underlying causes of strength weakening of electron beam welded joints of high-speed steels[J]. Journal of Manufacturing Processes, 2019, 39: 250 − 258. doi: 10.1016/j.jmapro.2019.01.047
|
Jin J, Gao R, Peng H, et al. Rapid solidification microstructure and carbide precipitation behavior in electron beam melted high-speed steel[J]. Metallurgical and Materials Transactions A, 2020, 51: 2411 − 2429. doi: 10.1007/s11661-020-05661-z
|
Wang H, Li J, Shi C B, et al. Evolution of carbides in H13 steel in heat treatment process[J]. Materials Transactions, 2017, 58(2): 152 − 156. doi: 10.2320/matertrans.M2016268
|
Jin J, Liu F B, Chen Y B, et al. Surface carbon chemical states of ion implanted AISI 440C martensitic stainless steel[J]. Journal of Iron & Steel Research International, 2015, 22(6): 513 − 518.
|
Lin Y T, Wang D P, Wang M C, et al. Effect of different pre-and post-weld heat treatments on microstructures and mechanical properties of variable polarity TIG welded AA2219 joints[J]. Science & Technology of Welding & Joining, 2015, 21(3): 234 − 241.
|
张敏, 贾芳, 程康康, 等. 调质处理对G520钢焊接接头组织及性能的影响[J]. 金属学报, 2019, 55(11): 1379 − 1387.
Zhang Min, Jia Fang, Cheng Kangkang, et al. Influence of quenching and tempering on microstructure and properties of welded joints of G520 martensitic steel[J]. Acta Metallurgica Sinica, 2019, 55(11): 1379 − 1387.
|
张敏, 仝雄伟, 李洁, 等. 焊前和焊后调质处理下25Cr2Ni4MoV钢焊接接头的组织及性能[J]. 机械工程材料, 2021, 45(1): 34 − 40.
Zhang Min, Tong Xiongwei, Li Jie, et al. Microstructure and properties of 25Cr2Ni4MoV steel welded joint under pre-welding and post-welding quenching and tempering treatment[J]. Materials For Mechanical Engineering, 2021, 45(1): 34 − 40.
|
Huang K T, Chang S H, Hsieh P C. Microstructure, mechanical properties and corrosion behavior of NbC modified AISI 440C stainless steel by vacuum sintering and heat treatments[J]. Journal of Alloys and Compounds, 2017, 712: 760 − 767. doi: 10.1016/j.jallcom.2017.04.125
|
Jalaja K, Manwatkar S K, Anand P, et al. Metallurgical analysis of surface distress on balls during the operation of AISI 440C ball bearings for satellite applications[J]. Engineering Failure Analysis, 2021, 124: 105376. doi: 10.1016/j.engfailanal.2021.105376
|
Puli R, Ram G. Microstructures and properties of friction surfaced coatings in AISI 440C martensitic stainless steel[J]. Surface & Coatings Technology, 2012, 207: 310 − 318.
|
Veerababu R, Prasad K S, Balamuralikrishnan R, et al. Austenite stability and M2C carbide decomposition in experimental secondary hardening ultra-high strength steels during high temperature austenitizing treatments[J]. Materials Characterization, 2018, 144: 191 − 204. doi: 10.1016/j.matchar.2018.07.013
|
Krishna S C, Tharian K T, Chakravarthi K V A, et al. Heat treatment and thermo-mechanical treatment to modify carbide banding in AISI 440C steel: a case study[J]. Metallography, Microstructure, and Analysis, 2016, 5(2): 108 − 115. doi: 10.1007/s13632-016-0266-0
|
Kawata H, Hayashi K, Wakabayashi C, et al. Martensite transformation start temperature during quench and austempering in Fe-8Ni-0.2 C alloys[J]. Metallurgical and Materials Transactions A, 2021, 52(4): 1395 − 1408. doi: 10.1007/s11661-021-06167-y
|
Lo K H, Cheng F T, Kwok C T, et al. Effects of laser treatments on cavitation erosion and corrosion of AISI 440C martensitic stainless steel[J]. Materials Letters, 2004, 58(1-2): 88 − 93. doi: 10.1016/S0167-577X(03)00421-X
|
Capdevila C, Caballero F G, García de Andrés C. Analysis of effect of alloying elements on martensite start temperature of steels[J]. Materials science and technology, 2003, 19(5): 581 − 586. doi: 10.1179/026708303225001902
|
Syarif J, Yousuf M H, Sajuri Z, et al. Effect of partial solution treatment temperature on microstructure and tensile properties of 440C martensitic stainless steel[J]. Metals - Open Access Metallurgy Journal, 2020, 10(5): 1 − 14.
|
Manwatkar S K, Bahrudheen A, Tiwari S B, et al. Failure analysis of AISI 440C steel ball screws used in the actuator system of a satellite launch vehicle[J]. Journal of Failure Analysis and Prevention, 2017, 17(3): 505 − 512. doi: 10.1007/s11668-017-0268-5
|
[1] | LIU Jinhao, LI Jiachen, ZHANG Liangliang, WU Baosheng, LI Peng, DONG Honggang. Microstructural evolution and corrosion property of Al-Mg alloy friction stir welding joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(10): 8-18. DOI: 10.12073/j.hjxb.20231011002 |
[2] | Fenggui LU, Dean DENG, Yaqi WANG, Chendong SHAO. Application and development of numerical simulation technology in laser welding process[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(8): 87-94. DOI: 10.12073/j.hjxb.20220430001 |
[3] | Rui MA, Linchuan LIU, Yajun WANG, Jie BAI, Caiwang TAN, Xiaoguo SONG. Effect of solution temperature on the microstructure evolution and mechanical properties of laser powder bed melting GH3536 alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(8): 73-79. DOI: 10.12073/j.hjxb.20220504002 |
[4] | YU Shurong, CHENG Nengdi, HUANG Jiankang, YU Xiaoquan, FAN Ding. Relationship between thermal process and microstructure during additive manufacturing of double-electrode gas metal arc welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(8): 1-6. DOI: 10.12073/j.hjxb.2019400200 |
[5] | LI Bingru, ZHOU Jianping, XU Yan, BAO Yang. Three-dimensional numerical simulation and analysis of temperature field in metal welding deposition prototyping[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(3): 42-46. DOI: 10.12073/j.hjxb.2018390065 |
[6] | WANG Xijing, WEI Xueling, ZHANG Liangliang. Microstructural evolution and mechanical properties of friction stir welded 6082-T6 aluminum alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(3): 1-5. DOI: 10.12073/j.hjxb.2018390057 |
[7] | CHENG Donghai, CHEN Long, CHEN Yiping, HU Dean. Microstructure evolution of electron beam welded 5A90 aluminum lithium alloy during superplastic deformation[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2017, 38(6): 29-32,36. |
[8] | ZHANG Lei, LIU Changqing, YU Jingwei, HU Xihai, GONG Feng, JIN Guangri. Numerical analysis of microstructure evolution of coarse grained zone in sidewall during narrow gap submerged arc welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(4): 103-106. |
[9] | CHENG Donghai, HUANG Jihua, CHEN Yiping, HU Dean. Microstructure evolution characterization of superplastic deformation of titanium alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2012, (7): 89-92. |
[10] | MA Rui, DONG Zhibo, WEI Yanhong, ZHAN Xiaohong. Simulation of solidification microstructure evolution in molten pool of nickel base alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2010, (7): 43-46. |
1. |
王志鹏,朱明亮,轩福贞. CrMoV与NiCrMoV异种钢焊接接头的高周疲劳性能及寿命模型. 焊接学报. 2024(07): 67-73 .
![]() |