Advanced Search
XI Wenshun, REN Xinyan, ZHANG Jinyuan, GUO Feng, WU Shengchuan, LI Zhongwen, HAN Xiaohui. Strength and life assessment of TC4 titanium alloy welded frame for high-speed railway vehicles[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(5): 29-35. DOI: 10.12073/j.hjxb.20210930001
Citation: XI Wenshun, REN Xinyan, ZHANG Jinyuan, GUO Feng, WU Shengchuan, LI Zhongwen, HAN Xiaohui. Strength and life assessment of TC4 titanium alloy welded frame for high-speed railway vehicles[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(5): 29-35. DOI: 10.12073/j.hjxb.20210930001

Strength and life assessment of TC4 titanium alloy welded frame for high-speed railway vehicles

More Information
  • Received Date: September 29, 2021
  • Available Online: April 12, 2022
  • The hardness distribution, basic mechanics and high cycle fatigue properties of TC4 titanium alloy base metal and welded joint were obtained by TIG arc welding test. The finite element simulation model of titanium alloy welded bogie frame with pseudo-axis was established, and the static and fatigue strength of the new TC4 titanium alloy and the existing S355 weathering steel frame was checked respectively. Based on the experimental fatigue load spectrum and Miner linear fatigue cumulative damage theory, the fatigue life of TC4 titanium alloy and S355 weathering steel bogie frames was evaluated respectively. The results show that the safety factor of the minimum static strength of titanium alloy and weathering steel bogie frame is 2.8 and 1.5 respectively, which are both greater than the safety factor threshold and meet the design requirements. Both the critical safety location of titanium alloy and weathering steel bogie frame were within the envelope range of modified Goodman fatigue limit diagram, which meets the design requirements. In addition, the envelope space of TC4 titanium alloy Goodman fatigue limit diagram was much larger than S355 weathering steel. Under typical level 8 load spectrum, if the annual operation is estimated to be 30 × 107 km, all critical location of the bogie frame could meet the design requirements of 35 years of service life, and the estimated life of TC4 titanium alloy bogie frame is about 2 times than that of S355 weathering steel bogie frame. The research can provide scientific basis for the strength and structure design of bogie frame with higher speed and safety level.
  • 吴圣川, 任鑫焱, 康国政, 等. 铁路车辆部件抗疲劳评估的进展与挑战[J]. 交通运输工程学报, 2021, 21(1): 81 − 114.

    Wu Shengchuan, Ren Xinyan, Kang Guozheng, et al. Progress and challenge on fatigue resistance assessment of railway vehicle componets[J]. Journal of Traffic and Transportation Engineering, 2021, 21(1): 81 − 114.
    王子晨, 曹健, 代翔宇, 等. Ag-Cu + WC复合钎料钎焊ZrO2陶瓷和TC4合金[J]. 焊接学报, 2019, 40(1): 5 − 9. doi: 10.12073/j.hjxb.2019400002

    Wang Zichen, Cao Jian, Dai Xiangyu, et al. Brazing ZrO2 ceramic and TC4 alloy using Ag-Cu + WC composite filler[J]. Transactions of the China Welding Institution, 2019, 40(1): 5 − 9. doi: 10.12073/j.hjxb.2019400002
    Wang Zeyu, Ba Jin, Qi Junlei, et al. Study and development on the lead-free composite solder[J]. China Welding, 2019, 28(4): 33 − 38.
    黄志辉, 王超, 孙龙生, 等. 一系钛合金弹簧的应用研究[J]. 机车电传动, 2017, 58(1): 14 − 16.

    Huang Zhihui, Wang Chao, Sun Longsheng, et al. Application prospect of titanium alloy spring in rail transit[J]. Electric Drive for Locomotives, 2017, 58(1): 14 − 16.
    沈阳泰恒通用技术有限公司. 一种钛合金及其加工列车连接件的应用: 中国, 201510582052.9[P]. 2015-11-18.

    Shenyang Taiheng General Technology Co., Ltd., A titanium alloy and its application in processing train connectors: China, 201510582052.9[P]. 2015-11-18.
    Cui C X, Hu B M, Zhao L C, et al. Titanium alloy production technology, market prospects and industry development[J]. Materials & Design, 2011, 32(3): 1684 − 1691.
    才鹤, 李维哲, 王泽飞, 等. 钛合金高速列车转向架侧梁组成焊接工艺[J]. 电焊机, 2020, 50(8): 52 − 56.

    Cai He, Li Weizhe, Wang Zefei, et al. Welding technology of titanium alloy high speed rail bogie frame[J]. Electric Welding Machine, 2020, 50(8): 52 − 56.
    张金元. 高速列车转向架钛合金焊接构架疲劳强度及寿命评估[D]. 成都: 西南交通大学, 2021.

    Zhang Jinyuan. Fatigue strength and life assessment on titanium alloy welded bogie frame of rail way vehicles[D]. Chengdu: Southwest Jiaotong University, 2021.
    Wu Z R, Hu X T, Song Y D. Multiaxial fatigue life prediction for titanium alloy TC4 under proportional and nonproportional loading[J]. International Journal of Fatigue, 2014, 59: 170 − 175. doi: 10.1016/j.ijfatigue.2013.08.028
    何杨宇, 杨素媛, 包明明, 等. 激光焊接钛合金接头的组织演变和力学行为[J]. 稀有金属, 2021, 45(8): 914 − 920.

    He Yangyu, Yang Suyuan, Bao Mingming, et al. Microstructure evolution and mechanical properties of laser welded joint of titanium alloy plate[J]. Chinese Journal of Rare Metals, 2021, 45(8): 914 − 920.
    Liu J, Wu H G, Yang J J, et al. Effect of edge distance ratio on residual stresses induced by cold expansion and fatigue life of TC4 plates[J]. Engineering Fracture Mechanics, 2013, 109: 130 − 137. doi: 10.1016/j.engfracmech.2013.05.012
    Yuan X, Yue Z F, Wen S F, et al. Numerical and experimental investigation of the cold expansion process with split sleeve in titanium alloy TC4[J]. International Journal of Fatigue, 2015, 77: 78 − 85. doi: 10.1016/j.ijfatigue.2015.03.014
    段浩. 铁道车辆转向架构架疲劳寿命及损伤容限评价[D]. 成都: 西南交通大学, 2018.

    Duan Hao. Fatigue life and damage tolerance assessment on bogie frame of railway vehicles[D]. Chengdu: Southwest Jiaotong University, 2018.
    Xie L Y, Liu J Z, Wu N X, et al. Backwards statistical inference method for P–S–N curve fitting with small-sample experiment data[J]. International Journal of Fatigue, 2014, 63: 62 − 67. doi: 10.1016/j.ijfatigue.2014.01.006
    Fedor F, Manfred H, Norbert H, et al. Probabilistic fatigue-life assessment model for laser-welded Ti-6Al-4V butt joints in the high-cycle fatigue regime[J]. International Journal of Fatigue, 2018, 116: 22 − 35.
    Li W, Zhao H Q, Nehila A, et al, Very high cycle fatigue of TC4 titanium alloy under variable stress ratio: Failure mechanism and life prediction[J]. International Journal of Fatigue, 2017, 104: 342-354.
    何超, 田仁慧, 王清远. 钛合金焊接接头超长寿命疲劳特性研究[J]. 中国测试, 2012, 38(3): 20 − 22,26.

    He Chao, Tian Renhui, Wang Qingyuan. Study on ultra-long-life fatigue properties of welded joints under high-frequency loading[J]. China Measurement & Test, 2012, 38(3): 20 − 22,26.
    Liu X L, Sun C Q, Hong Y S. Effects of stress ratio on high-cycle and very-high-cycle fatigue behavior of a Ti-6Al-4V alloy[J]. Materials Science and Engineering A, 2015, 622: 228 − 235. doi: 10.1016/j.msea.2014.09.115
    李扬. TC4手工钨极氩弧焊(TIG焊)焊缝组织性能研究[D]. 包头: 内蒙古科技大学, 2017.

    Li Yang. Study on microstructure and properties of TIG welding[D]. Baotou: Inner Mongolia University of Science & Technology, 2017.
    任尊松, 曹杰, 李玉怡, 等. 高速动车组构架载荷特征研究[J]. 工程力学, 2021, 38(2): 242 − 256. doi: 10.6052/j.issn.1000-4750.2020.03.0181

    Ren Zunsong, Cao Jie, Li Yuyi, et al. The load characteristics of the bogie frame of high-speed EMU[J]. Engineering Mechanics, 2021, 38(2): 242 − 256. doi: 10.6052/j.issn.1000-4750.2020.03.0181
    王文静, 张志鹏, 李广全, 等. 动车组抗侧滚扭杆载荷特性[J]. 西南交通大学学报, 2019, 54(6): 1277 − 1282,1348. doi: 10.3969/j.issn.0258-2724.20180060

    Wang Wenjing, Zhang Zhipeng, Li Guangquan, et al. Load characteristics of anti-rolling torsion bar of high-speed train[J]. Journal of Southwest Jiaotong University, 2019, 54(6): 1277 − 1282,1348. doi: 10.3969/j.issn.0258-2724.20180060
    沈彩瑜, 米彩盈. 重载电力机车车体强度和刚度研究[J]. 计算机仿真, 2014, 31(2): 230 − 234. doi: 10.3969/j.issn.1006-9348.2014.02.049

    Shen Caiyu, Mi Caiying. The strength and stiffness study for overloading electric locomotive carbody[J]. Computer Simulation, 2014, 31(2): 230 − 234. doi: 10.3969/j.issn.1006-9348.2014.02.049
    张亚禹, 孙守光, 杨广雪, 等. 高速列车转向架构架载荷特征及疲劳损伤评估[J]. 机械工程学报, 2020, 56(10): 163 − 171. doi: 10.3901/JME.2020.10.163

    Zhang Yayu, Sun Shouguang, Yang Guangxue, et al. Load characteristics and fatigue damage assessment of high speed train bogie frame[J]. Journal of Mechanical Engineering, 2020, 56(10): 163 − 171. doi: 10.3901/JME.2020.10.163
    张永亮. 基于跟踪测试的高速动车组构架载荷特性研究[D]. 北京: 北京交通大学, 2013.

    Zhang Yongliang. Study on load characteristic of high-speed EMU bogie frame based on tracking test[D]. Beijjing: Beijing Jiaotong University, 2013.
    Guo F, Wu S C, Liu J X, et al. Fatigue life assessment of bogie frames in high-speed railway vehicles considering gear meshing[J]. International Journal of Fatigue, 2020, 132: 105353. doi: 10.1016/j.ijfatigue.2019.105353
  • Related Articles

    [1]GAI Shengnan, WANG Yu, XU Bin, WANG Kai, XIAO Jun, CHEN Shujun. Monitoring of aluminum alloy weld formation using TIG based on passive vision[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2025, 46(4): 32-40. DOI: 10.12073/j.hjxb.20240102001
    [2]LI Jichao, DAI Hongbin. Research on the weld performance of 5A03 aluminum alloy with variable gas TIG welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(10): 67-72. DOI: 10.12073/j.hjxb.20201123003
    [3]DU Maohua, HAN Yongquan, FAN Weijie, HONG Haitao. Mechanism of weld formation using double pulsed variable polarity plasma arc welding of high strength aluminum alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(2): 43-47. DOI: 10.12073/j.hjxb.20190810002
    [4]CHEN Qihao, LIN Sanbao, YANG Chunli, FAN Chenglei. Effect of applying ultrasonic during TIG welding on appearance of welded joint of aluminum alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(11): 67-70.
    [5]LEI Yucheng, ZHAO Kai, HUANG Wei, LIANG Shenyong. Effect of La2O3 on microstructure and mechanical properties of MGH956 alloy during TIG welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2013, (10): 1-4.
    [6]CHANG Yunlong, LU Lin, LI Yingmin, YANG Xu. Mechanism of weld formation during high speed TIG welding with external magnetic fields[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2013, (6): 1-4.
    [7]GAO Zhiguo, HUANG Jian, LI Yaling, WU Yixiong. Effect of relative position of laser beam and arc on formation of weld in laser-MIG hybrid welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (12): 69-73.
    [8]ZHANG Guangjun, ZHAO Linlin, LENG Xuesong. Numerical simulation on weld formation of twin-electrode GTAW welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (8): 29-31.
    [9]WANG Shubao, ZHANG Haikuan, LENG Xuesong, WU Lin. Twin-electrode TIG welding procedure and mechanism of weld formation[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2007, (2): 21-24.
    [10]LUO Jian, JIA Chang-shen, WANG Ya-sheng, XUE Jin. Mechanism of Longitudinal Intermittent Alternative Magnetic Field on Weld Formation in Tungsten Inert-gas Arc Welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2001, (3): 17-20.
  • Cited by

    Periodical cited type(0)

    Other cited types(3)

Catalog

    Article views (486) PDF downloads (82) Cited by(3)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return