Citation: | XI Wenshun, REN Xinyan, ZHANG Jinyuan, GUO Feng, WU Shengchuan, LI Zhongwen, HAN Xiaohui. Strength and life assessment of TC4 titanium alloy welded frame for high-speed railway vehicles[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(5): 29-35. DOI: 10.12073/j.hjxb.20210930001 |
吴圣川, 任鑫焱, 康国政, 等. 铁路车辆部件抗疲劳评估的进展与挑战[J]. 交通运输工程学报, 2021, 21(1): 81 − 114.
Wu Shengchuan, Ren Xinyan, Kang Guozheng, et al. Progress and challenge on fatigue resistance assessment of railway vehicle componets[J]. Journal of Traffic and Transportation Engineering, 2021, 21(1): 81 − 114.
|
王子晨, 曹健, 代翔宇, 等. Ag-Cu + WC复合钎料钎焊ZrO2陶瓷和TC4合金[J]. 焊接学报, 2019, 40(1): 5 − 9. doi: 10.12073/j.hjxb.2019400002
Wang Zichen, Cao Jian, Dai Xiangyu, et al. Brazing ZrO2 ceramic and TC4 alloy using Ag-Cu + WC composite filler[J]. Transactions of the China Welding Institution, 2019, 40(1): 5 − 9. doi: 10.12073/j.hjxb.2019400002
|
Wang Zeyu, Ba Jin, Qi Junlei, et al. Study and development on the lead-free composite solder[J]. China Welding, 2019, 28(4): 33 − 38.
|
黄志辉, 王超, 孙龙生, 等. 一系钛合金弹簧的应用研究[J]. 机车电传动, 2017, 58(1): 14 − 16.
Huang Zhihui, Wang Chao, Sun Longsheng, et al. Application prospect of titanium alloy spring in rail transit[J]. Electric Drive for Locomotives, 2017, 58(1): 14 − 16.
|
沈阳泰恒通用技术有限公司. 一种钛合金及其加工列车连接件的应用: 中国, 201510582052.9[P]. 2015-11-18.
Shenyang Taiheng General Technology Co., Ltd., A titanium alloy and its application in processing train connectors: China, 201510582052.9[P]. 2015-11-18.
|
Cui C X, Hu B M, Zhao L C, et al. Titanium alloy production technology, market prospects and industry development[J]. Materials & Design, 2011, 32(3): 1684 − 1691.
|
才鹤, 李维哲, 王泽飞, 等. 钛合金高速列车转向架侧梁组成焊接工艺[J]. 电焊机, 2020, 50(8): 52 − 56.
Cai He, Li Weizhe, Wang Zefei, et al. Welding technology of titanium alloy high speed rail bogie frame[J]. Electric Welding Machine, 2020, 50(8): 52 − 56.
|
张金元. 高速列车转向架钛合金焊接构架疲劳强度及寿命评估[D]. 成都: 西南交通大学, 2021.
Zhang Jinyuan. Fatigue strength and life assessment on titanium alloy welded bogie frame of rail way vehicles[D]. Chengdu: Southwest Jiaotong University, 2021.
|
Wu Z R, Hu X T, Song Y D. Multiaxial fatigue life prediction for titanium alloy TC4 under proportional and nonproportional loading[J]. International Journal of Fatigue, 2014, 59: 170 − 175. doi: 10.1016/j.ijfatigue.2013.08.028
|
何杨宇, 杨素媛, 包明明, 等. 激光焊接钛合金接头的组织演变和力学行为[J]. 稀有金属, 2021, 45(8): 914 − 920.
He Yangyu, Yang Suyuan, Bao Mingming, et al. Microstructure evolution and mechanical properties of laser welded joint of titanium alloy plate[J]. Chinese Journal of Rare Metals, 2021, 45(8): 914 − 920.
|
Liu J, Wu H G, Yang J J, et al. Effect of edge distance ratio on residual stresses induced by cold expansion and fatigue life of TC4 plates[J]. Engineering Fracture Mechanics, 2013, 109: 130 − 137. doi: 10.1016/j.engfracmech.2013.05.012
|
Yuan X, Yue Z F, Wen S F, et al. Numerical and experimental investigation of the cold expansion process with split sleeve in titanium alloy TC4[J]. International Journal of Fatigue, 2015, 77: 78 − 85. doi: 10.1016/j.ijfatigue.2015.03.014
|
段浩. 铁道车辆转向架构架疲劳寿命及损伤容限评价[D]. 成都: 西南交通大学, 2018.
Duan Hao. Fatigue life and damage tolerance assessment on bogie frame of railway vehicles[D]. Chengdu: Southwest Jiaotong University, 2018.
|
Xie L Y, Liu J Z, Wu N X, et al. Backwards statistical inference method for P–S–N curve fitting with small-sample experiment data[J]. International Journal of Fatigue, 2014, 63: 62 − 67. doi: 10.1016/j.ijfatigue.2014.01.006
|
Fedor F, Manfred H, Norbert H, et al. Probabilistic fatigue-life assessment model for laser-welded Ti-6Al-4V butt joints in the high-cycle fatigue regime[J]. International Journal of Fatigue, 2018, 116: 22 − 35.
|
Li W, Zhao H Q, Nehila A, et al, Very high cycle fatigue of TC4 titanium alloy under variable stress ratio: Failure mechanism and life prediction[J]. International Journal of Fatigue, 2017, 104: 342-354.
|
何超, 田仁慧, 王清远. 钛合金焊接接头超长寿命疲劳特性研究[J]. 中国测试, 2012, 38(3): 20 − 22,26.
He Chao, Tian Renhui, Wang Qingyuan. Study on ultra-long-life fatigue properties of welded joints under high-frequency loading[J]. China Measurement & Test, 2012, 38(3): 20 − 22,26.
|
Liu X L, Sun C Q, Hong Y S. Effects of stress ratio on high-cycle and very-high-cycle fatigue behavior of a Ti-6Al-4V alloy[J]. Materials Science and Engineering A, 2015, 622: 228 − 235. doi: 10.1016/j.msea.2014.09.115
|
李扬. TC4手工钨极氩弧焊(TIG焊)焊缝组织性能研究[D]. 包头: 内蒙古科技大学, 2017.
Li Yang. Study on microstructure and properties of TIG welding[D]. Baotou: Inner Mongolia University of Science & Technology, 2017.
|
任尊松, 曹杰, 李玉怡, 等. 高速动车组构架载荷特征研究[J]. 工程力学, 2021, 38(2): 242 − 256. doi: 10.6052/j.issn.1000-4750.2020.03.0181
Ren Zunsong, Cao Jie, Li Yuyi, et al. The load characteristics of the bogie frame of high-speed EMU[J]. Engineering Mechanics, 2021, 38(2): 242 − 256. doi: 10.6052/j.issn.1000-4750.2020.03.0181
|
王文静, 张志鹏, 李广全, 等. 动车组抗侧滚扭杆载荷特性[J]. 西南交通大学学报, 2019, 54(6): 1277 − 1282,1348. doi: 10.3969/j.issn.0258-2724.20180060
Wang Wenjing, Zhang Zhipeng, Li Guangquan, et al. Load characteristics of anti-rolling torsion bar of high-speed train[J]. Journal of Southwest Jiaotong University, 2019, 54(6): 1277 − 1282,1348. doi: 10.3969/j.issn.0258-2724.20180060
|
沈彩瑜, 米彩盈. 重载电力机车车体强度和刚度研究[J]. 计算机仿真, 2014, 31(2): 230 − 234. doi: 10.3969/j.issn.1006-9348.2014.02.049
Shen Caiyu, Mi Caiying. The strength and stiffness study for overloading electric locomotive carbody[J]. Computer Simulation, 2014, 31(2): 230 − 234. doi: 10.3969/j.issn.1006-9348.2014.02.049
|
张亚禹, 孙守光, 杨广雪, 等. 高速列车转向架构架载荷特征及疲劳损伤评估[J]. 机械工程学报, 2020, 56(10): 163 − 171. doi: 10.3901/JME.2020.10.163
Zhang Yayu, Sun Shouguang, Yang Guangxue, et al. Load characteristics and fatigue damage assessment of high speed train bogie frame[J]. Journal of Mechanical Engineering, 2020, 56(10): 163 − 171. doi: 10.3901/JME.2020.10.163
|
张永亮. 基于跟踪测试的高速动车组构架载荷特性研究[D]. 北京: 北京交通大学, 2013.
Zhang Yongliang. Study on load characteristic of high-speed EMU bogie frame based on tracking test[D]. Beijjing: Beijing Jiaotong University, 2013.
|
Guo F, Wu S C, Liu J X, et al. Fatigue life assessment of bogie frames in high-speed railway vehicles considering gear meshing[J]. International Journal of Fatigue, 2020, 132: 105353. doi: 10.1016/j.ijfatigue.2019.105353
|
[1] | GAI Shengnan, WANG Yu, XU Bin, WANG Kai, XIAO Jun, CHEN Shujun. Monitoring of aluminum alloy weld formation using TIG based on passive vision[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2025, 46(4): 32-40. DOI: 10.12073/j.hjxb.20240102001 |
[2] | LI Jichao, DAI Hongbin. Research on the weld performance of 5A03 aluminum alloy with variable gas TIG welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(10): 67-72. DOI: 10.12073/j.hjxb.20201123003 |
[3] | DU Maohua, HAN Yongquan, FAN Weijie, HONG Haitao. Mechanism of weld formation using double pulsed variable polarity plasma arc welding of high strength aluminum alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(2): 43-47. DOI: 10.12073/j.hjxb.20190810002 |
[4] | CHEN Qihao, LIN Sanbao, YANG Chunli, FAN Chenglei. Effect of applying ultrasonic during TIG welding on appearance of welded joint of aluminum alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(11): 67-70. |
[5] | LEI Yucheng, ZHAO Kai, HUANG Wei, LIANG Shenyong. Effect of La2O3 on microstructure and mechanical properties of MGH956 alloy during TIG welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2013, (10): 1-4. |
[6] | CHANG Yunlong, LU Lin, LI Yingmin, YANG Xu. Mechanism of weld formation during high speed TIG welding with external magnetic fields[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2013, (6): 1-4. |
[7] | GAO Zhiguo, HUANG Jian, LI Yaling, WU Yixiong. Effect of relative position of laser beam and arc on formation of weld in laser-MIG hybrid welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (12): 69-73. |
[8] | ZHANG Guangjun, ZHAO Linlin, LENG Xuesong. Numerical simulation on weld formation of twin-electrode GTAW welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (8): 29-31. |
[9] | WANG Shubao, ZHANG Haikuan, LENG Xuesong, WU Lin. Twin-electrode TIG welding procedure and mechanism of weld formation[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2007, (2): 21-24. |
[10] | LUO Jian, JIA Chang-shen, WANG Ya-sheng, XUE Jin. Mechanism of Longitudinal Intermittent Alternative Magnetic Field on Weld Formation in Tungsten Inert-gas Arc Welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2001, (3): 17-20. |