Citation: | LONG Weimin, LIU Dashuang, ZHANG Guanxing, WU Aiping. Melting and heat transfer mechanism of powder by induction brazing coating[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(11): 29-34. DOI: 10.12073/j.hjxb.20210916001 |
张增志, 牛俊杰, 付跃文. 感应熔覆镍基合金粉末涂层工艺和性能研究[J]. 材料热处理学报, 2004, 25(2): 31 − 34,86.
Zhang Zengzhi, Niu Junjie, Fu Yuewen. Process and performance of Nickel-base alloy coating by induction cladding[J]. Transactions of Materials and Heat Treatment, 2004, 25(2): 31 − 34,86.
|
杨蒙瑶, 陈焕文, 郭建军, 等. 石墨/镍基金属钎涂层界面结构分析及性能[J]. 焊接学报, 2017, 38(2): 120 − 124.
Yang Mengyao, Chen Huanwen, Guo Jianjun, et al. Microstructure analysis and performance research of graphite/nickel-based brazing coation[J]. Transactions of the China Welding Institution, 2017, 38(2): 120 − 124.
|
Yu Jing, Yu Hongfei. Coating properties, energy consumption, and cost analysis of the induction cladding process[J]. Results in Physics, 2020, 17: 103043. doi: 10.1016/j.rinp.2020.103043
|
Chen Xuliang, Qin Xunpen, Zhu Zhenhua, et al. Microstructural evolution and wear properties of the continual local induction cladding NiCrBSi coatings[J]. Journal of Materials Processing Technology, 2018, 262: 257 − 268. doi: 10.1016/j.jmatprotec.2018.05.034
|
Koray Kilicay, Soner Buytoz, Mustafa Ulutan. Microstructural and tribological properties of induction cladded NiCrBSi/WC composite coatings[J]. Surface and Coatings Technology, 2020, 397: 125974. doi: 10.1016/j.surfcoat.2020.125974
|
Yu Jing, Bo Song. Effects of heating time on the microstructure and properties of an induction cladding coating[J]. Results in Physics, 2018, 11: 212 − 218. doi: 10.1016/j.rinp.2018.09.010
|
司浩, 秦建, 钟素娟, 等. 钎涂技术的研究进展[J]. 材料导报, 2021, 35(S2): 333 − 340,345.
Si Hao, Qin Jian, Zhong Sujuan, et al. Research advancing in brazing coating technology[J]. Materials Reports, 2021, 35(S2): 333 − 340,345.
|
杜全斌, 龙伟民, 路全彬, 等. 钎料表面微结构对糊状钎剂黏附性的影响[J]. 焊接学报, 2017, 38(2): 37 − 40.
Du Quanbin, Long Weimin, Lu Quanbin, et al. Effect of surface microstructure on adhesive ability of flux suspendion[J]. Transactions of the China Welding Institution, 2017, 38(2): 37 − 40.
|
Long Weimin, Li Shengnan, Du Dong, et al. Morphological evolution and development trend of brazing materials[J]. Rare Metal Materials and Engineering, 2019, 48(12): 3781 − 3790.
|
龙伟民, 高雅, 何鹏, 等. 钎焊技术在金刚石工具中的应用[J]. 焊接, 2017(4): 10 − 16. doi: 10.3969/j.issn.1001-1382.2017.04.002
Long Weimin, Gao Ya, He Peng, et al. Application of brazing technology to diamond tools manufacturing[J]. Welding & Joining, 2017(4): 10 − 16. doi: 10.3969/j.issn.1001-1382.2017.04.002
|
Cui Bing, Tao Shanren, Xue Hangyan, et al. A brief review of brazing diamond in cutting tools[J]. China Welding, 2019, 28(2): 56 − 64.
|
Aprilia Aprilia, Tan Jin Jee, Yang Yongjing, et al. Induction brazing for rapid localized repair of Inconel 718[J]. Metals, 2021, 11(7): 1096. doi: 10.3390/met11071096
|
童欣, 苏宏华, 徐九华, 等. 成形砂轮超高频感应加热温度分布均匀性分析[J]. 焊接学报, 2015, 36(2): 51 − 54,58.
Tong Xin, Su Honghua, Xu Jiuhua, et al. Uniformity of ultra-high frequency inducion heating temperature distribution of grinding wheel[J]. Transactions of the China Welding Institution, 2015, 36(2): 51 − 54,58.
|
Li Mingcong, Zhang Fenglin, Zhou Yumei, et al. Preparation and performance of resin-bonded grinding wheel with braze-coated diamond grits[J]. Diamond and Related Materials, 2020, 101: 107619. doi: 10.1016/j.diamond.2019.107619
|
Zhao Pengcheng, Zhao Liangyin, Tan Long, et al. Investigation on the induction brazing of copper-steel tubes with different coil structures[J]. Welding in the World, 2021, 65: 1181 − 1188. doi: 10.1007/s40194-021-01074-7
|
谭敏. 超高频感应钎焊金刚石砂轮[D]. 南京: 南京航空航天大学, 2013.
Tan Min. Brazing diamond grinding wheels with ultra-high-frequency induction[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2013.
|
徐正亚. 高频感应钎焊金刚石砂轮的基础研究[D]. 南京: 南京航空航天大学, 2008.
Xu Zhengya. Fundametal research on high-frequency induction brazing of diamond wheels[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2008.
|
罗云萌. 高频感应钎焊电源技术研究[D]. 镇江: 江苏科技大学, 2012.
Luo Yunmeng. Research of high-frequency induction brazing power source[D]. Zhenjiang: Jiangsu University of Science and Technology, 2012.
|
于洪飞. 非均匀磁场对感应熔覆涂层组织和性能的影响[D]. 大连: 大连海事大学, 2020.
Yu Hongfei. Effect of inhomogeneous magnetic field on microstructure and properties of iduction cladding coating[D]. Dalian: Dalian Maritime University, 2020.
|
徐琦. 镍基钎料钎焊金刚石工具界面结合行为及其强化机制研究[D]. 长沙: 长沙理工大学, 2020.
Xu Qi. Study on interfacial bonding behaviors and enhancement mechanism of brazed diamond tools with Ni-based filler alloy[D]. Changsha: Changsha University of Science & Technology, 2020.
|
张亚东. PDC刀具高频感应钎焊工艺及机理研究[D]. 大连: 大连理工大学, 2016.
Zhang Yadong. Research on high-frequency induction brazing technology and mechanism of PDC cutting tools[D]. Dalian: Dalian University of Technology, 2016.
|
Long Weimin, Zhang Guanxing, Zhang Qingke. In situ synthesis of high strength Ag brazing filler metals during induction brazing process[J]. Scripta Materialia, 2016, 110: 41 − 43. doi: 10.1016/j.scriptamat.2015.07.041
|
Wei Min, Yu Helong, Song Zhangyong, et al. Microstructural evolution, mechanical properties and wear behavior of in-situ TiC-reinforced Ti matrix composite coating by induction cladding[J]. Surface and Coatings Technology, 2021, 412: 127048. doi: 10.1016/j.surfcoat.2021.127048
|
韩绍华, 薛丁琪. 感应加热辅助原位合成Ti3SiC2连接SiC陶瓷[J]. 焊接学报, 2018, 39(3): 61 − 66. doi: 10.12073/j.hjxb.2018390069
Han Shaohua, Xue Dingqi. Joining of SiC ceramics by induction heated combustion synthesis of Ti3SiC2[J]. Transactions of the China Welding Institution, 2018, 39(3): 61 − 66. doi: 10.12073/j.hjxb.2018390069
|
吴奇隆, 张雷, 孙华为, 等. 钎涂金刚石在盾构刀具再制造中的应用[J]. 金刚石与磨料磨具工程, 2021, 41(5): 9 − 13.
Wu Qilong, Zhang Lei, Sun Huawei, et al. Application of brazed coating diamond in remanufacturing of shield cutters[J]. Diamond and Abrasives Engineering, 2021, 41(5): 9 − 13.
|
[1] | YAO Yu, ZHANG Qiuju, CHEN Xiaoyan, LV Qing, JIAO Lu. Automatic programming system of complex space trajectory welding robot[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(5): 122-128. DOI: 10.12073/j.hjxb.20220623003 |
[2] | LI Haichao, GONG Shan, CUI Jingjing, GAO Hongming. Path planning of robot off-line programming for profiled bar cutting[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2012, (2): 1-4. |
[3] | YIN Ziqiang, ZHANG Guangjun, GAO Hongming, WU Lin. Calibration approach for structured-light sensor in remanufacture based on welding robot[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2009, (12): 57-60. |
[4] | JIAO Xiangdong, ZHOU Canfeng, XUE Long, GAO Hui, FANG Xiaoming. Tele-operated TIG welding robot for hyperbaric underwater pipeline repair welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2009, (11): 1-4. |
[5] | DU Hongwang, WANG Zongyi, LIU Shaogang, ZHAO Yanan. Kinematics and track amendments of intersecting pipe welding robot[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2009, (7): 45-48. |
[6] | FENG Shengqiang, HU Shengsun, DU Naicheng. Equipment modeling of off-line programming system of the arc welding robot based on UG[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (4): 89-92. |
[7] | LIU Yong, XU Yue-lan, WANG Ke-hong, YU Jin, YANG Jing-yu. Off-line programming system of arc-welding robot based on boiler[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2004, (3): 52-56. |
[8] | HE Guang-zhong, YANG Sheng-qun, WU Lin, ZHANG Guang-jun. Modeling of devices in a robot arc off-line programming system[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2004, (1): 99-102. |
[9] | SONG Yue-e, WU Lin, TIAN Jing-song, DAI Ming. Operation Object Calibration Algorithm Used for Robotic Off-line Programming[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2002, (3): 32-36. |
[10] | JIAO Xiang-dong, JIANG Li-pei, XUE Long, CHAN Qiang, SUN Zhen-guo, WANG Jun-bo. Intelligent Control System of All-position Welding Robot[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2000, (4): 1-4. |