Citation: | YANG Linmei, MU Guowan. Size distribution and growth mechanism of interfacial intermetallic compounds in Sn3.0Ag0.5Cu/Cu reflow solder joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(4): 61-67. DOI: 10.12073/j.hjxb.20210915001 |
Lee C J, Myung W R, Park B G, et al. Effect of Ag-decorated MWCNT on the mechanical and thermal property of Sn58Bi solder joints for FCLED package[J]. Journal of Materials Science - Materials in Electronics, 2020, 31: 10170 − 10176. doi: 10.1007/s10854-020-03562-w
|
Zhang P, Xue S B, Wang J H. New challenges of miniaturization of electronic devices: electromigration and thermomigration in lead-free solder joints[J]. Materials & Design, 2020, 192: 108726.
|
Ma H L, Zhao B G, Wu, G Z, et al. A SnBiAgIn solder alloy with exceptional mechanical properties by rapid quenching[J]. Journal of Materials Science:Materials in Electronics, 2021, 32(6): 8167 − 8173. doi: 10.1007/s10854-021-05539-9
|
Yamamoto M, Shohji I, Kobayashi T. Effect of small amount of Ni addition on microstructure and fatigue properties of Sn-Sb-Ag lead-free solder[J]. Materials, 2021, 14(14): 3799. doi: 10.3390/ma14143799
|
Zeng X W, Liu Y C, Zhang J K, et al. Effect of rare earth Ce on the thermal behavior, microstructure and mechanical properties of Zn-30Sn-2Cu high temperature lead-free solder alloy[J]. Journal of Materials Science:Materials in Electronics, 2020, 31: 16437 − 16447. doi: 10.1007/s10854-020-04196-8
|
Lin P, Liu W S, Ma Y Z, et al. Characteristic morphologies that cause failure of Au80Sn20/AlN substrate solder joint under combined temperature cycle and current switch cycle tests[J]. Journal of Materials Science: Materials in Electronics, 2020, 31(21): 19013 − 19024. doi: 10.1007/s10854-020-04438-9
|
Zhang L, Liu Z Q. Inhibition of intermetallic compounds growth at Sn-58Bi/Cu interface bearing CuZnAl memory particles (2-6 μm)[J]. Journal of Materials Science:Materials in Electronics, 2020, 31: 2466 − 2480. doi: 10.1007/s10854-019-02784-x
|
Liu Y, Ren B Q, Zhou M, et al. Microstructure, mechanical, and thermal behaviors of SnBi/Cu solder joint enhanced by porous Cu[J]. Journal of Materials Science:Materials in Electronics, 2020, 31(11): 8258 − 8267. doi: 10.1007/s10854-020-03361-3
|
Yang L M, Zhang Z F. Effect of Y2O3 nanoparticles addition on the microstructure and tensile strength of Cu/Sn3.0Ag0.5Cu solder joint[J]. Journal of Applied Physics, 2015, 117: 015308. doi: 10.1063/1.4905587
|
Ghaleeh M, Baroutaji A, Qubesissi M A. Microstructure, isothermal and thermomechanical fatigue behaviour of leaded and lead-free solder joints[J]. Engineering Failure Analysis, 2020, 117: 104846. doi: 10.1016/j.engfailanal.2020.104846
|
Yang L M, Zhang Z F. Effects of Y2O3 nanoparticles on growth behaviors of Cu6Sn5 grains in soldering reaction[J]. Journal of Electronic Materials, 2013, 42: 3552 − 3558. doi: 10.1007/s11664-013-2817-3
|
Wang F J, Chen H, Huang Y, et al. Recent progress on the development of Sn-Bi based low-temperature Pb-free solders[J]. Journal of Materials Science: Materials in Electronics, 2019, 30(4): 3222 − 3243. doi: 10.1007/s10854-019-00701-w
|
Kelly M B, Niverty S, Chawla N. Four dimensional (4D) microstructural evolution of Cu6Sn5 intermetallic and voids under electromigration in bi-crystal pure Sn solder joints[J]. Acta Materialia, 2020, 189: 118 − 128. doi: 10.1016/j.actamat.2020.02.052
|
Suh J O, Tu K N, Lutsenko G V, et al. Size distribution and morphology of Cu6Sn5 scallops in wetting reaction between molten solder and copper[J]. Acta Materialia, 2008, 56(5): 1075 − 1083. doi: 10.1016/j.actamat.2007.11.009
|
Zou H, Yang H, Zhang Z. Coarsening mechanisms, texture evolution and size distribution of Cu6Sn5 between Cu and Sn-based solders[J]. Materials Chemistry and Physics, 2011, 131: 190 − 198. doi: 10.1016/j.matchemphys.2011.08.061
|
Ekpu M. Investigating the reliability of SnAgCu solder alloys at elevated temperatures in microelectronic applications[J]. Journal of Electronic Materials, 2021, 50(8): 4433 − 4441. doi: 10.1007/s11664-021-08968-8
|
Yang L M, Zhang Z F. Growth behaviors of intermetallic compounds in Cu/Sn3.0A0.5Cu solder joints with different rates of cooling[J]. Journal of Electronic Materials, 2015, 44: 590 − 596. doi: 10.1007/s11664-014-3530-6
|
Yang L M, Quan S Y, Liu C, et al. Aging resistance of the Sn-Ag-Cu solder joints doped with Mo nanoparticles[J]. Materials Letters, 2019, 253: 191 − 194. doi: 10.1016/j.matlet.2019.06.068
|
Wu J, Xue S B, Wang J W, et al. Coupling effects of rare-earth Pr and Al2O3 nanoparticles on the microstructure and properties of Sn-0.3Ag-0.7Cu low-Ag solder[J]. Journal of Alloys and Compounds, 2019, 784: 471 − 487. doi: 10.1016/j.jallcom.2019.01.034
|
Yang L M, Shi X F, Quan S Y. Evolution of microstructure and effects on crack formation of Sn3.0Ag0.5Cu/Cu solder joints under accelerated thermal cycling[J]. Materials Research Express, 2019, 6: 076518. doi: 10.1088/2053-1591/ab1334
|
Yang L, Quan S, Liu C, et al. Effect of Mo nanoparticles on the growth behavior of the intermetallic compounds layer in Sn3.0Ag0.5Cu/Cu solder joints[J]. J Nanosci Nanotechnol, 2020, 20: 2573 − 2577. doi: 10.1166/jnn.2020.17203
|
张知航, 杨健, 杨震, 等. Cu基板粗糙度对SnAgCu无铅钎料润湿性的影响[J]. 焊接学报, 2022, 43(1): 22 − 28.
Zhang Zhihang, Yang Jian, Yang Zhen, et al. Influence of Cu substrate roughness on wettability of SnAgCu lead-free solder[J]. Transaction of the China Welding Institution, 2022, 43(1): 22 − 28.
|
吴洁, 薛松柏, 于志浩, 等. Nd对Sn-3.8Ag-0.7Cu/Cu焊点高温可靠性的影响[J]. 焊接学报, 2021, 42(7): 9 − 13.
Wu Jie, Xue Songbai, Yu Zhihao, et al. Effect of Nd on the high temperature reliability of Sn-3.8Ag-0.7Cu/Cu solder joint[J]. Transaction of the China Welding Institution, 2021, 42(7): 9 − 13.
|
孙磊, 陈明和, 张亮, 等. Sn-Ag-Cu钎料焊接显微组织演化和性能研究[J]. 金属学报, 2017, 53: 615 − 621. doi: 10.11900/0412.1961.2016.00332
Sun Lei, Chen Minghe, Zhang Liang, et al. Microstructures evolution and properties of Sn-Ag-Cu solder joints[J]. Acta Metallurgica Sinica, 2017, 53: 615 − 621. doi: 10.11900/0412.1961.2016.00332
|
Li M L, Zhang L, Jiang N, et al. Materials modification of the lead-free solders incorporated with micro/nano-sized particles: A review[J]. Materials & Design, 2021, 197: 109224.
|
Lifshitz I M, Slyozov V V. The kinetics of precipitation from supersaturated solid solutions[J]. Journal of Physics and Chemistry of Solids, 1961, 19(1): 35 − 50.
|
Wagner C. Theorie der alterung von niederschlägen durch umlösen[J]. Zeitschrift für Elektrochemie, 1961, 65(7-8): 581 − 591.
|
Gusak A M, Tu K N. Kinetic theory of flux-driven ripening[J]. Physical Review B: Condensed Matter, 2002, 66: 115403. doi: 10.1103/PhysRevB.66.115403
|
Deng X, Sidhu R S, Johnson P, et al. Influence of reflow and thermal aging on the shear strength and fracture behavior of Sn-3.5Ag solder/Cu joints[J]. Metallurgical & Materials Transactions A, 2005, 36: 55 − 64.
|
Kim H K, Tu K N. Kinetic analysis of the soldering reaction between eutectic SnPb alloy and Cu accompanied by ripening[J]. Physical Review B, 1996, 53(23): 16027 − 16034.
|