Advanced Search
YANG Linmei, MU Guowan. Size distribution and growth mechanism of interfacial intermetallic compounds in Sn3.0Ag0.5Cu/Cu reflow solder joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(4): 61-67. DOI: 10.12073/j.hjxb.20210915001
Citation: YANG Linmei, MU Guowan. Size distribution and growth mechanism of interfacial intermetallic compounds in Sn3.0Ag0.5Cu/Cu reflow solder joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(4): 61-67. DOI: 10.12073/j.hjxb.20210915001

Size distribution and growth mechanism of interfacial intermetallic compounds in Sn3.0Ag0.5Cu/Cu reflow solder joints

More Information
  • Received Date: September 14, 2021
  • Available Online: April 17, 2022
  • In the process of electronic packaging, an intermetallic compounds layer is formed at the interface between solder and Cu substrate. The intermetallic compounds layer is mainly composed of Cu6Sn5 compounds. The size and morphology of the Cu6Sn5 intermetallic compounds have a notable influence on the reliability of solder joints. A series of Sn3.0Ag0.5Cu/Cu solder joints were prepared by reflow soldering method. Image-Pro Plus software was used to statistically analyze the size distribution and the thickness of the Cu6Sn5 grains. The results show that the average diameter of Cu6Sn5 grains is proportional to t0.38, where t is the reflow time. The mean thickness of the interfacial compounds layer is proportional to t0.32. With the increase of reflow time, the growth rate of interfacial compound slows down, and Cu6Sn5 grain size distribution becomes more uniform. The size distribution of Cu6Sn5 in samples with long reflow time is basically consistent with the theoretical curve of FRD model, while for samples with short reflow time, the grain size distribution deviates from the FRD theory. The statistical results show that the grain size with the highest frequency is less than the average value. The growth mechanism of interfacial Cu6Sn5 grains was discussed, and the effect of reflow time on the growth way of Cu6Sn5 grains was analyzed.
  • Lee C J, Myung W R, Park B G, et al. Effect of Ag-decorated MWCNT on the mechanical and thermal property of Sn58Bi solder joints for FCLED package[J]. Journal of Materials Science - Materials in Electronics, 2020, 31: 10170 − 10176. doi: 10.1007/s10854-020-03562-w
    Zhang P, Xue S B, Wang J H. New challenges of miniaturization of electronic devices: electromigration and thermomigration in lead-free solder joints[J]. Materials & Design, 2020, 192: 108726.
    Ma H L, Zhao B G, Wu, G Z, et al. A SnBiAgIn solder alloy with exceptional mechanical properties by rapid quenching[J]. Journal of Materials Science:Materials in Electronics, 2021, 32(6): 8167 − 8173. doi: 10.1007/s10854-021-05539-9
    Yamamoto M, Shohji I, Kobayashi T. Effect of small amount of Ni addition on microstructure and fatigue properties of Sn-Sb-Ag lead-free solder[J]. Materials, 2021, 14(14): 3799. doi: 10.3390/ma14143799
    Zeng X W, Liu Y C, Zhang J K, et al. Effect of rare earth Ce on the thermal behavior, microstructure and mechanical properties of Zn-30Sn-2Cu high temperature lead-free solder alloy[J]. Journal of Materials Science:Materials in Electronics, 2020, 31: 16437 − 16447. doi: 10.1007/s10854-020-04196-8
    Lin P, Liu W S, Ma Y Z, et al. Characteristic morphologies that cause failure of Au80Sn20/AlN substrate solder joint under combined temperature cycle and current switch cycle tests[J]. Journal of Materials Science: Materials in Electronics, 2020, 31(21): 19013 − 19024. doi: 10.1007/s10854-020-04438-9
    Zhang L, Liu Z Q. Inhibition of intermetallic compounds growth at Sn-58Bi/Cu interface bearing CuZnAl memory particles (2-6 μm)[J]. Journal of Materials Science:Materials in Electronics, 2020, 31: 2466 − 2480. doi: 10.1007/s10854-019-02784-x
    Liu Y, Ren B Q, Zhou M, et al. Microstructure, mechanical, and thermal behaviors of SnBi/Cu solder joint enhanced by porous Cu[J]. Journal of Materials Science:Materials in Electronics, 2020, 31(11): 8258 − 8267. doi: 10.1007/s10854-020-03361-3
    Yang L M, Zhang Z F. Effect of Y2O3 nanoparticles addition on the microstructure and tensile strength of Cu/Sn3.0Ag0.5Cu solder joint[J]. Journal of Applied Physics, 2015, 117: 015308. doi: 10.1063/1.4905587
    Ghaleeh M, Baroutaji A, Qubesissi M A. Microstructure, isothermal and thermomechanical fatigue behaviour of leaded and lead-free solder joints[J]. Engineering Failure Analysis, 2020, 117: 104846. doi: 10.1016/j.engfailanal.2020.104846
    Yang L M, Zhang Z F. Effects of Y2O3 nanoparticles on growth behaviors of Cu6Sn5 grains in soldering reaction[J]. Journal of Electronic Materials, 2013, 42: 3552 − 3558. doi: 10.1007/s11664-013-2817-3
    Wang F J, Chen H, Huang Y, et al. Recent progress on the development of Sn-Bi based low-temperature Pb-free solders[J]. Journal of Materials Science: Materials in Electronics, 2019, 30(4): 3222 − 3243. doi: 10.1007/s10854-019-00701-w
    Kelly M B, Niverty S, Chawla N. Four dimensional (4D) microstructural evolution of Cu6Sn5 intermetallic and voids under electromigration in bi-crystal pure Sn solder joints[J]. Acta Materialia, 2020, 189: 118 − 128. doi: 10.1016/j.actamat.2020.02.052
    Suh J O, Tu K N, Lutsenko G V, et al. Size distribution and morphology of Cu6Sn5 scallops in wetting reaction between molten solder and copper[J]. Acta Materialia, 2008, 56(5): 1075 − 1083. doi: 10.1016/j.actamat.2007.11.009
    Zou H, Yang H, Zhang Z. Coarsening mechanisms, texture evolution and size distribution of Cu6Sn5 between Cu and Sn-based solders[J]. Materials Chemistry and Physics, 2011, 131: 190 − 198. doi: 10.1016/j.matchemphys.2011.08.061
    Ekpu M. Investigating the reliability of SnAgCu solder alloys at elevated temperatures in microelectronic applications[J]. Journal of Electronic Materials, 2021, 50(8): 4433 − 4441. doi: 10.1007/s11664-021-08968-8
    Yang L M, Zhang Z F. Growth behaviors of intermetallic compounds in Cu/Sn3.0A0.5Cu solder joints with different rates of cooling[J]. Journal of Electronic Materials, 2015, 44: 590 − 596. doi: 10.1007/s11664-014-3530-6
    Yang L M, Quan S Y, Liu C, et al. Aging resistance of the Sn-Ag-Cu solder joints doped with Mo nanoparticles[J]. Materials Letters, 2019, 253: 191 − 194. doi: 10.1016/j.matlet.2019.06.068
    Wu J, Xue S B, Wang J W, et al. Coupling effects of rare-earth Pr and Al2O3 nanoparticles on the microstructure and properties of Sn-0.3Ag-0.7Cu low-Ag solder[J]. Journal of Alloys and Compounds, 2019, 784: 471 − 487. doi: 10.1016/j.jallcom.2019.01.034
    Yang L M, Shi X F, Quan S Y. Evolution of microstructure and effects on crack formation of Sn3.0Ag0.5Cu/Cu solder joints under accelerated thermal cycling[J]. Materials Research Express, 2019, 6: 076518. doi: 10.1088/2053-1591/ab1334
    Yang L, Quan S, Liu C, et al. Effect of Mo nanoparticles on the growth behavior of the intermetallic compounds layer in Sn3.0Ag0.5Cu/Cu solder joints[J]. J Nanosci Nanotechnol, 2020, 20: 2573 − 2577. doi: 10.1166/jnn.2020.17203
    张知航, 杨健, 杨震, 等. Cu基板粗糙度对SnAgCu无铅钎料润湿性的影响[J]. 焊接学报, 2022, 43(1): 22 − 28.

    Zhang Zhihang, Yang Jian, Yang Zhen, et al. Influence of Cu substrate roughness on wettability of SnAgCu lead-free solder[J]. Transaction of the China Welding Institution, 2022, 43(1): 22 − 28.
    吴洁, 薛松柏, 于志浩, 等. Nd对Sn-3.8Ag-0.7Cu/Cu焊点高温可靠性的影响[J]. 焊接学报, 2021, 42(7): 9 − 13.

    Wu Jie, Xue Songbai, Yu Zhihao, et al. Effect of Nd on the high temperature reliability of Sn-3.8Ag-0.7Cu/Cu solder joint[J]. Transaction of the China Welding Institution, 2021, 42(7): 9 − 13.
    孙磊, 陈明和, 张亮, 等. Sn-Ag-Cu钎料焊接显微组织演化和性能研究[J]. 金属学报, 2017, 53: 615 − 621. doi: 10.11900/0412.1961.2016.00332

    Sun Lei, Chen Minghe, Zhang Liang, et al. Microstructures evolution and properties of Sn-Ag-Cu solder joints[J]. Acta Metallurgica Sinica, 2017, 53: 615 − 621. doi: 10.11900/0412.1961.2016.00332
    Li M L, Zhang L, Jiang N, et al. Materials modification of the lead-free solders incorporated with micro/nano-sized particles: A review[J]. Materials & Design, 2021, 197: 109224.
    Lifshitz I M, Slyozov V V. The kinetics of precipitation from supersaturated solid solutions[J]. Journal of Physics and Chemistry of Solids, 1961, 19(1): 35 − 50.
    Wagner C. Theorie der alterung von niederschlägen durch umlösen[J]. Zeitschrift für Elektrochemie, 1961, 65(7-8): 581 − 591.
    Gusak A M, Tu K N. Kinetic theory of flux-driven ripening[J]. Physical Review B: Condensed Matter, 2002, 66: 115403. doi: 10.1103/PhysRevB.66.115403
    Deng X, Sidhu R S, Johnson P, et al. Influence of reflow and thermal aging on the shear strength and fracture behavior of Sn-3.5Ag solder/Cu joints[J]. Metallurgical & Materials Transactions A, 2005, 36: 55 − 64.
    Kim H K, Tu K N. Kinetic analysis of the soldering reaction between eutectic SnPb alloy and Cu accompanied by ripening[J]. Physical Review B, 1996, 53(23): 16027 − 16034.

Catalog

    Article views (365) PDF downloads (50) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return