Advanced Search
KANG Yue, ZHAO Yanqiu, LI Yue, CHEN Dan, QI Na, ZHAN Xiaohong. Effect of driving force on molten pool behavior of 2219 aluminum alloy DLBSW process[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(2): 82-87. DOI: 10.12073/j.hjxb.20210901001
Citation: KANG Yue, ZHAO Yanqiu, LI Yue, CHEN Dan, QI Na, ZHAN Xiaohong. Effect of driving force on molten pool behavior of 2219 aluminum alloy DLBSW process[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(2): 82-87. DOI: 10.12073/j.hjxb.20210901001

Effect of driving force on molten pool behavior of 2219 aluminum alloy DLBSW process

More Information
  • Received Date: September 08, 2021
  • Available Online: February 28, 2022
  • The thermal-fluid coupling model of 2219 aluminum alloy T-type structure with dual laser-beam bilateral synchronous welding (DLBSW) was established to explore the relationship between the driving force of molten pool and flow field during DLBSW process. The driving effects of surface tension, recoil pressure, gravity and thermal buoyancy on molten pool flow field were analyzed, and the mechanism of molten pool flow field under combined influence of driving forces was indicated. The results show that: the flow fluid on the surface of molten pool is mainly driven by surface tension; the circulation formed at the left and back of the bottom of the molten pool are mainly co-driven by surface, gravity and thermal buoyancy; the bottom of molten pool below keyhole flows along the edge of molten pool under co-driven of gravity and thermal buoyancy.
  • 王惠芬, 杨碧琦, 刘刚. 航天器结构材料的应用现状与未来展望[J]. 材料导报, 2018, 32(S1): 395 − 399.

    Wang Huifen, Yang Biqi, Liu Gang, et al. Application status and future prospect of materials for spacecraft structures[J]. Materials Reports, 2018, 32(S1): 395 − 399.
    陈聪. 高强铝合金光纤激光切焊一体化关键技术与机理研究[D]. 武汉: 华中科技大学, 2017.

    Chen Cong. Fiber laser cutting-welding integrative technique of high strength aluminum alloy[D]. Huazhong University of Science and Technology, 2017.
    占小红, 欧文敏, 魏艳红, 等. 飞机壁板先进焊接技术应用现状[J]. 航空制造技术, 2013(22): 42 − 44.

    Zhan Xiaohong, Ou Wenmin, Wei Yanhong, et al. Application status of advanced welding technology of aircraft panels[J]. Aeronautical Manufacturing Technology, 2013(22): 42 − 44.
    Rendigs K H. Aluminium structures used in aerospace-status and prospects[J]. Materials Science Forum, 1997, 242: 11 − 24. doi: 10.4028/www.scientific.net/MSF.242.11
    Dittrich D, Standfuss J, Liebscher J, et al. Laser beam welding of hard to weld Al alloys for a regional aircraft fuselage design-first results[J]. Physics Procedia, 2011, 12: 113 − 122. doi: 10.1016/j.phpro.2011.03.015
    Wang H, Shi Y, Gong S. Numerical simulation of laser keyhole welding processes based on control volume methods[J]. Journal of Physics D-Applied Physics, 2006, 39(21): 4722 − 4730. doi: 10.1088/0022-3727/39/21/032
    Lange F, Artinov A, Bachmann M, et al. Numerical simulation of the weld pool dynamics during pulsed laser welding using adapted heat source models[J]. Procedia CIRP, 2018, 74: 679 − 682. doi: 10.1016/j.procir.2018.08.044
    Zhang R, Tang X, Xu L, et al. Study of molten pool dynamics and porosity formation mechanism in full penetration fiber laser welding of Al-alloy[J]. International Journal of Heat and Mass Transfer, 2020, 148: 119089. doi: 10.1016/j.ijheatmasstransfer.2019.119089
    Zhan X, Chen J, Wei Y, et al. Heat source analyses of dual laser-beam bilateral synchronous welding for T-joint[J]. China Welding, 2011, 20(1): 28 − 33.
    Li L, Peng G, Wang J, et al. Numerical and experimental study on keyhole and melt flow dynamics during laser welding of aluminium alloys under subatmospheric pressures[J]. International Journal of Heat and Mass Transfer, 2019, 133: 812 − 826. doi: 10.1016/j.ijheatmasstransfer.2018.12.165
    张聃. Invar合金激光-MIG复合焊接过程多相耦合流场行为研究[D]. 南京: 南京航空航天大学, 2018.

    Zhang Dan. Study on multiphase coupled flow field behavior during laser-mig hybrid welding of invar alloy[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2018.
  • Related Articles

    [1]HAN Xiaohui, LI Shuaizhen, WU Laijun, TAN Caiwang, LI Gangqing, SONG Xiaoguo. Effects of surface layer microstructure on liquation crack and fatigue properties of 6005A aluminum alloy MIG joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(5): 14-20. DOI: 10.12073/j.hjxb.20210825004
    [2]WANG Lei, FU Qiang, AN Jinlan, ZHOU Song. Multi-zone fatigue crack growth behavior of friction stir welding of 2A12-T4 aluminum alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(2): 24-29. DOI: 10.12073/j.hjxb.20200724001
    [3]JIN Yuhua, ZHANG Lin, ZHANG Liangliang, WANG Xijing. Fatigue crack growth behavior of 7050 aluminum alloy friction stir welded joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(10): 11-16. DOI: 10.12073/j.hjxb.20200709002
    [4]JI Hua, DENG Yunlai, DENG Jianfeng, XU Hongyong, LIN Sen. Effect of welding speed on mechanical properties of bobbin tool friction stir welded 6005A-T6 aluminum alloy joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(5): 24-29. DOI: 10.12073/j.hjxb.2019400122
    [5]JI Kai, ZHANG Jing, XU Yusong. Fatigue properties of welded joints of New 6005A alloy with high copper content[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2017, 38(1): 95-98.
    [6]DAI Qilei, MENG Lichun, LIANG Zhifang, WU Jianjun, SHI Qingyu. Comparison of fatigue crack propagation behavior of friction stir welded and metal inert-gas welded A6N01 joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2015, 36(9): 9-12,38.
    [7]LÜ Xiaochun, LEI Zhen, ZHANG Jian, ZHANG Lihua. Study on the softening of 6005A-T6 aluminum alloy welding joints for high-speed train[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2014, 35(8): 25-29.
    [8]ZHU Xiaogang, WANG Lianfeng, QIAO Fengbin, GUO Lijie. Fatigue failure analysis of 6061-T6 aluminum alloy refilled friction stir spot welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2014, 35(4): 91-94.
    [9]ZHANG Jian, LEI Zhen, WANG Xuyou. Weld hot crack analysis of 6005A aluminum alloy profile for high-speed train[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2012, (8): 60-64.
    [10]WANG Xijing, LI Shuwei, NIU Yong, Zhang Jie. Fatigue crack growth rate of A7075 FSW[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (9): 5-7.
  • Cited by

    Periodical cited type(4)

    1. 张明,周磊磊,梁恩荣,朱志刚,张朋彦. 22MnB5/QStE550TM异种钢焊接接头组织与性能分析. 过程工程学报. 2024(07): 863-874 .
    2. 李赫,王磊,黄勇,周明,周琦,王克鸿. 预热温度对AH36激光焊缝组织及硬度的影响. 焊接. 2021(10): 25-28+62 .
    3. 岑耀东,陈芙蓉,陈林. 异种钢电阻塞焊飞溅缺陷的产生机理. 焊接学报. 2019(12): 115-120+166 . 本站查看
    4. 陈丽园,苗佳,穆云平,郝晓卫,宗桓旭. 异种耐候钢塞焊接头组织与疲劳性能研究. 电焊机. 2018(07): 67-71 .

    Other cited types(1)

Catalog

    Article views (410) PDF downloads (24) Cited by(5)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return