Advanced Search
YU Zhaohui, SUN Zhen, YANG Tao, JIAN Hailin, LI Qinghua. Microstructures and mechanical properties of Inconel 690/S32101 dissimilar lap joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(10): 44-48. DOI: 10.12073/j.hjxb.20210419002
Citation: YU Zhaohui, SUN Zhen, YANG Tao, JIAN Hailin, LI Qinghua. Microstructures and mechanical properties of Inconel 690/S32101 dissimilar lap joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(10): 44-48. DOI: 10.12073/j.hjxb.20210419002

Microstructures and mechanical properties of Inconel 690/S32101 dissimilar lap joints

More Information
  • Received Date: April 18, 2021
  • Available Online: November 15, 2021
  • The GTAW (gas tungsten arc welding) was employed to weld Inconel 690 nickel-based alloy overlay plate and S32101 duplex stainless-steel, a new type material for fabricating spent fuel pool, with lap joint. Microstructures and mechanical properties of the joints fabricated with autogenous welding and filler welding were comparative studied. Compared with autogenous welding, a sound bead, with larger lap width and the tensile strength of 538 MPa, was obtained by filler welding under the optimized welding parameters. The welds were characteristic of cellular grains and fine ferritic precipitates dispersed among them. Different solidification microstructures were presented at fusion boundaries within weld. Epitaxial growth can be observed in the side of Inconel 690 and planar growth in the other side. Austenite dissolution range in the heat affected zone of the filler welding is narrower than that of autogenous welding.
  • 邓天红. 某核电厂乏燃料水池覆面焊接变形分析及处理[J]. 焊接技术, 2013, 42(2): 56 − 59. doi: 10.3969/j.issn.1002-025X.2013.02.016

    Deng Tianhong. Analysis and treatment of liner welding deformation in the spent fuel pit in a nuclear power plant[J]. Welding Technology, 2013, 42(2): 56 − 59. doi: 10.3969/j.issn.1002-025X.2013.02.016
    李锴, 钟志民, 孟令强. 压水堆核电厂乏燃料水池失效分析与预防初探[J]. 金属热处理, 2019, 44(S1): 435 − 440.

    Li Kai, Zhong Zhimin, Meng Lingqiang. Spent fuel pool failure analysis and protection research for PWR nuclear power plant[J]. Heat Treatment of Metals, 2019, 44(S1): 435 − 440.
    赵迪, 李光福, 钟志民. 核电厂水池用不锈钢的腐蚀问题及相关研究[J]. 腐蚀与防护, 2020, 41(9): 10 − 15. doi: 10.11973/fsyfh-202009002

    Zhao Di, Li Guangfu, Zhong Zhimin. Corrosion of stainless steels for water pools of nuclear power plants and relevant researches[J]. Corrosion & Protection, 2020, 41(9): 10 − 15. doi: 10.11973/fsyfh-202009002
    卞向南, 邵长磊, 张晓春, 等. 基于激光焊接技术的水下焊缝修复系统研究[J]. 机械研究与应用, 2020, 33(6): 52 − 54.

    Bian Xiangnan, Shao Changlei, Zhang Xiaochun, et al. Research on the underwater weld repair system based on laser welding technology[J]. Mechanical Research & Application, 2020, 33(6): 52 − 54.
    王振民, 谢芳祥, 冯允樑, 等. 水下机器人局部干法焊接系统[J]. 焊接学报, 2017, 38(1): 5 − 8.

    Wang Zhenmin, Xie Fangxiang, Feng Yunliang, et al. Underwater robot local dry welding system[J]. Transactions of the China Welding Institution, 2017, 38(1): 5 − 8.
    向林涛, 陈国栋, 张攀峰, 等. 水下焊接机器人弧线轨迹平顺运动控制策略[J]. 焊接学报, 2018, 39(6): 104 − 109.

    Xiang Lintao, Chen Guodong, Zhang Panfeng, et al. A smooth trajectory motion control strategy of underwater welding robot[J]. Transactions of the China Welding Institution, 2018, 39(6): 104 − 109.
    郭伟, 郭宁, 杜永鹏, 等. 不同水下环境介质对水下焊接电弧等离子体成分及温度的影响[J]. 焊接学报, 2016, 37(10): 13 − 16.

    Guo Wei, Guo Ning, Du Yongpeng, et al. Effect of different underwater environment media on composition and temperature of underwater welding arc plasma[J]. Transactions of the China Welding Institution, 2016, 37(10): 13 − 16.
    庄源, 黄忠平, 史寅康, 等. 一种新型核电站建设材料—双相不锈钢[J]. 热加工工艺, 2012, 41(18): 69 − 71.

    Zhuang Yuan, Huang Zhongping, Shi Yinkang, et al. New material in nuclear power plant construction: duplex stainless steel[J]. Hot Working Technology, 2012, 41(18): 69 − 71.
    Kou S. Welding metallurgy[M]. Hoboken: Wliley-Interscience, 2002.
    Lippold J C, Kotecki D J. Welding metallurgy and weldability of stainless steels[M]. Hoboken: Wiley & Sons, 2005.
    郭枭, 何鹏, 徐锴, 等. 一种核电用镍基合金焊丝熔敷金属的组织与性能[J]. 焊接学报, 2020, 41(4): 26 − 30. doi: 10.12073/j.hjxb.20191120002

    Guo Xiao, He Peng, Xu Kai, et al. Microstructure and mechanical properties of deposited metal for nuclear plant nickel alloy welding wire[J]. Transactions of the China Welding Institution, 2020, 41(4): 26 − 30. doi: 10.12073/j.hjxb.20191120002
  • Related Articles

    [1]WANG Jiajie, JIAO Yong, YU Jiuhao, WANG Guoxing, XU Jianping. Numerical simulations of temperature field and keyhole evolution for electron beam welding pool[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2017, 38(6): 87-90.
    [2]XIE Weifeng, LEI Yucheng, ZHU Qiang, XIA Xiaoping. Investigation in resonance frequency of keyhole plasma ultrasound-arc welding based on FEM simulation[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2012, (10): 21-24.
    [3]ZHANG Tao, WU Chuansong. Numerical simulation of temperature field and fluid flow in keyhole plasma arc welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2011, (7): 87-90.
    [4]WANG Renping, LEI Yongping, SHI Yaowu. Numerical simulation of keyhole formation process in laser deep penetration welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2010, (11): 38-40.
    [5]KONG Ji-lan, ZHANG Peng-cheng, ZHOU Shang-qi, ZOU Jue-sheng. The Computer Simulation of Concentration Field for Be/HR-1 Stainless Steel on HIP[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2002, (3): 11-14.
    [6]LI Huan, HU Lian-hai, LI Jun-yue, YANG Li-jun. Computer Simulation and Experimental Research on CO2 Short-cir.cuit Transfer Welding Under Waveform Control[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2002, (2): 1-4.
    [7]YANG Qing-xiang, LI Yan-li, ZHAO Yan-hui, YAO Mei. Computer Simulation of Residual Stress Field of Hardfacing Metal and Effect of Specimen Dimension[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2001, (3): 44-46.
    [8]Zhang Hua, Pan Jiluan. 3D Simulation of Computer for Weld Temperature Field Based on 2D Measurement[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1999, (4): 225-232.
    [9]Zhang Chudong. Computer simulation of transient microstructure prediction of welding process[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1992, (2): 121-126.
    [10]Yang Zhiyuan, Jiang Lipei, Wang Fuchun, Xuan Shunji. Computer simulation analysis of SCR arc welding rectifier circuits[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1992, (1): 51-58.

Catalog

    Article views (268) PDF downloads (41) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return