Citation: | ZOU Li, REN Siyuan, YANG Guang, YANG Xinhua. Analysis of factors affecting fatigue life of welded joints based on improved conditional neighborhood entropy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(11): 43-50. DOI: 10.12073/j.hjxb.20210323001 |
刘刚, 唐柳伦, 黄一. 基于场强法的焊接接头疲劳寿命影响因素研究[J]. 船舶力学, 2014, 18(S1): 158 − 164.
Liu Gang, Tang Liulun, Huang Yi. A study on influence factors of fatigue in welded joints based on field intensity approach[J]. Journal of Ship Mechanics, 2014, 18(S1): 158 − 164.
|
王悦东, 葛巍, 李向伟. 焊接接头疲劳寿命评估中板厚参数的影响分析[J]. 大连交通大学学报, 2017, 38(1): 30 − 33.
Wang Yuedong, Ge Wei, Li Xiangwei. Effect analysis of plate thickness parameter in evaluation of welded joints fatigue life[J]. Journal of Dalian Jiaotong University, 2017, 38(1): 30 − 33.
|
Shin W S, Chang K H, Muzaffer S. Fatigue analysis of cruciform welded joint with weld penetration defects[J]. Engineering Failure Analysis, 2021, 120: 105111. doi: 10.1016/j.engfailanal.2020.105111
|
刘亚良, 孙屹博, 邹丽, 等. 基于信息熵的铝合金焊接接头疲劳寿命分析方法[J]. 焊接学报, 2018, 39(4): 67 − 72. doi: 10.12073/j.hjxb.2018390098
Liu Yaliang, Sun Yibo, Zou Li, et al. Fatigue life analysis method of aluminum alloy welded joints based on information entropy[J]. Transactions of the China Welding Institution, 2018, 39(4): 67 − 72. doi: 10.12073/j.hjxb.2018390098
|
杨龙, 杨冰, 阳光武, 等. 不锈钢车体点焊接头疲劳特性分析[J]. 焊接学报, 2020, 41(7): 18 − 24,52. doi: 10.12073/j.hjxb.20191204005
Yang Long, Yang Bing, Yang Guangwu, et al. Analysis on fatigue characteristics of spot welded joints of stainless steel car body[J]. Transactions of the China Welding Institution, 2020, 41(7): 18 − 24,52. doi: 10.12073/j.hjxb.20191204005
|
刘夕, 陈广冉, 孟庆禹, 等. 基于局部应变能密度的厚板T形接头焊趾和焊根疲劳性能分析[J]. 焊接学报, 2020, 41(9): 74 − 80.
Liu Xi, Chen Guangran, Meng Qingyu, et al. Fatigue performance analysis of weld toe and root of thick T-joint based on local strain energy density[J]. Transactions of the China Welding Institution, 2020, 41(9): 74 − 80.
|
Sinha A K, Namdev N. Feature selection and pattern recognition for different types of skin disease in human body using the rough set method[J]. Network Modeling Analysis in Health Informatics and Bioinformatics, 2020, 9(1): 1 − 11. doi: 10.1007/s13721-019-0207-3
|
Shylaja B S, Bhaskar R. Rough-set and machine learning-based approach for optimised virtual machine utilization in cloud computing[J]. IET Networks, 2020, 9(6): 279 − 283. doi: 10.1049/iet-net.2020.0001
|
Singh M, Pamula R. An outlier detection approach in large-scale data stream using rough set[J]. Neural Computing and Applications, 2020, 32(3): 9113 − 9127.
|
Qu J, Bai X, Gu J, et al. Assessment of rough set theory in relation to risks regarding hydraulic engineering investment decisions[J]. Mathematics, 2020, 8(8): 1308. doi: 10.3390/math8081308
|
Xie J, Shen X, Liu H, et al. Research on an incremental attribute reduction based on relative positive region[J]. Journal of Software, 2013, 9(16): 6621 − 6628.
|
Wang C, Ou F. An attribute reduction algorithm in rough set theory based on information entropy [C]//2008 International Symposium on Computational Intelligence and Design. IEEE, 2008: 3-6.
|
王春生, 邹丽, 杨鑫华. 基于邻域粗糙集的铝合金焊接接头疲劳寿命影响因素分析[J]. 吉林大学学报(工学版), 2017, 47(6): 1848 − 1853.
Wang Chunsheng, Zou Li, Yang Xinhua. Analysis of fatigue life factors of aluminum alloy welded joints based on neighborhood rough set theory[J]. Journal of Jilin University (Engineering and Technology Edition), 2017, 47(6): 1848 − 1853.
|
邹丽, 杨鑫华, 孙屹博, 等. 基于RS_RBFNN的钛合金焊接接头疲劳寿命预测[J]. 焊接学报, 2015, 36(4): 25 − 29,78.
Zou Li, Yang Xinhua, Sun Yibo, et al. Prediction of fatigue life of titanium alloy welded joints based on RS_RBFNN[J]. Transactions of the China Welding Institution, 2015, 36(4): 25 − 29,78.
|
Liu Y, Zou L, Sun Y, et al. Evaluation model of aluminum alloy welded joint low-cycle fatigue data based on information entropy[J]. Entropy, 2017, 19(1): 37. doi: 10.3390/e19010037
|
Zou L, Yang X, Tan J, et al. Fatigue life prediction of 5083 and 5A06 aluminum alloy T-welded joints based on the fatigue characteristics domain[J]. Fracture and Structural Integrity, 2018, 12(45): 53 − 66.
|
Zou L, Sun Y, Yang X. An entropy-based neighborhood rough set and PSO-SVRM model for fatigue life prediction of titanium alloy welded joints[J]. Entropy, 2019, 21(2): 117. doi: 10.3390/e21020117
|
Zou L, Li H, Jiang W, et al. An improved fish swarm algorithm for neighborhood rough set reduction and its application[J]. IEEE Access, 2019, 7: 90277 − 90288.
|
Zou L, Ren S, Li H, et al. An optimization of master s-n curve fitting method based on improved neighborhood rough set[J]. IEEE Access, 2021, 9: 8404 − 8420.
|
Jiang Z, Liu K, Yang X, et al. Accelerator for supervised neighborhood based attribute reduction[J]. International Journal of Approximate Reasoning, 2020, 119: 122 − 150. doi: 10.1016/j.ijar.2019.12.013
|
周艳红, 张贤勇, 莫智文. 粒化单调的条件邻域熵及其相关属性约简[J]. 计算机研究与发展, 2018, 55(11): 2395 − 2405. doi: 10.7544/issn1000-1239.2018.20170607
Zhou Yanhong, Zhang Xianyong, Mo Zhiwen. Conditional neighborhood entropy with granulation monotonicity and its relevant attribute reduction[J]. Journal of Computer Research and Development, 2018, 55(11): 2395 − 2405. doi: 10.7544/issn1000-1239.2018.20170607
|
胡清华, 于达仁, 谢宗霞. 基于邻域粒化和粗糙逼近的数值属性约简[J]. 软件学报, 2008(3): 640 − 649.
Hu Qinghua, Yu Daren, Xie Zongxia. Numerical attribute reduction based on neighborhood granulation and rough approximation[J]. Journal of Software, 2008(3): 640 − 649.
|
Qian W, Long X, Wang Y, et al. Multi-label feature selection based on label distribution and feature complementarity[J]. Applied Soft Computing Journal, 2020, 90: 106167. doi: 10.1016/j.asoc.2020.106167
|
Cruz J, Costa J, Borrego L, et al. Fatigue life prediction in AlMgSi1 lap joint weldments[J]. International Journal of Fatigue, 2000, 22(7): 601 − 610. doi: 10.1016/S0142-1123(00)00023-2
|
Beretta S, Sala G. A model for fatigue strength of welded lap joints[J]. Fatigue & Fracture of Engineering Materials & Structures, 2005, 28(1-2): 257 − 264.
|
Sidhom N, Laamouri A, Fathallah R, et al. Fatigue strength improvement of 5083 H11 Al-alloy T-welded joints by shot peening: experimental characterization and predictive approach[J]. International Journal of Fatigue, 2005, 27(7): 729 − 745. doi: 10.1016/j.ijfatigue.2005.02.001
|
Sidhom N, Braham C, Lieurade H P. Fatigue life evaluation of shot peened Al-alloys 5083 H11 T-welded joints by experimental and numerical approaches[J]. Welding in the World, 2007, 51(1-2): 50 − 57. doi: 10.1007/BF03266548
|
邹丽. 焊接接头疲劳寿命智能评价方法及其应用研究[D]. 大连: 大连交通大学, 2017.
Zou Li. Intelligent evaluation method for fatigue life of welded joints and its application[D]. Dalian: Dalian Jiaotong University, 2017.
|