Citation: | YANG Fan, CHEN Furong. Numerical simulation of effect of A-UIT treatment on welding stress of 7075 aluminum alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(12): 91-96. DOI: 10.12073/j.hjxb.20210308001 |
陈芙蓉, 刘成豪, 李男. 超声冲击时间对7A52铝合金VPPA-MIG焊接接头的影响[J]. 焊接学报, 2020, 41(9): 39 − 43. doi: 10.12073/j.hjxb.20200403003
Chen Furong, Liu Chenghao, Li Nan. Effect of ultrasonic impact time on VPPA-MIG welded joint of 7A52 aluminum alloy[J]. Transactions of the China Welding Institution, 2020, 41(9): 39 − 43. doi: 10.12073/j.hjxb.20200403003
|
Wang Yue, Chai Peng, Guo Xiaojuan, et al. Effect of connection processes on mechanical properties of 7B04 aluminum alloy structures[J]. China Welding, 2021, 30(2): 50 − 57.
|
刘丹. 激光焊数值模拟及试验研究[D]. 南昌: 南昌大学, 2015.
Liu Dan. Numerical simulation and experimental research on laser welding [D]. Nanchang: Nanchang University, 2015.
|
肖荣诗, 陈铠, 左铁钏. 高强铝合金激光焊接新进展[J]. 应用激光, 2002, 22(2): 206 − 208.
Xiao Rongshi, Chen Kai, Zuo Tiechuan. New progress in laser welding of high strength aluminum alloy[J]. Applied Laser, 2002, 22(2): 206 − 208.
|
Casalino G , Mortello M , Peyre P. FEM analysis of fiber laser welding of titanium and aluminum[J]. Procedia CIRP, 2016, 41: 992 − 997.
|
许伟. 7075铝合金激光热丝焊接仿真与工艺研究[D]. 湘潭: 湖南科技大学, 2018.
Xu Wei. Simulation and process research of 7075 aluminum alloy laser hot wire welding[D]. Xiangtan: Hunan University of Science and Technology, 2018.
|
章碧成. 6005A铝合金型材激光填丝焊接头应力应变模拟研究[D]. 哈尔滨: 哈尔滨工业大学, 2020.
Zhang Bicheng. Simulation study on stress and strain of 6005A aluminum alloy profile laser filler welded joint[D]. Harbin: Harbin Institute of Technology, 2020.
|
谢灿军, 童明波, 刘富, 等. 7075-T6铝合金动态力学试验及本构模型研究[J]. 振动与冲击, 2014(18): 110 − 114,125.
Xie Canjun, Tong Mingbo, Liu Fu, et al. Study on dynamic mechanical test and constitutive model of 7075-T6 aluminum alloy[J]. Vibration and Impact, 2014(18): 110 − 114,125.
|
耿其东, 李春燕, 洪捐. 超声冲击对7075铝合金残余应力及微观组织的影响[J]. 科学技术与工程, 2020, 20(8): 3017 − 3023.
Geng Qidong, Li Chunyan, Hong Juan. Effect of ultrasonic impact on residual stress and microstructure of 7075 aluminum alloy[J]. Science, Technology and Engineering, 2020, 20(8): 3017 − 3023.
|
Togasaki Y, Tsuji H, Honda T, et al. Effect of UIT on fatigue life in Web-Gusset welded joints[J]. Jsmme, 2010, 4(3): 391 − 400.
|
Sara B, Mario G. Influence of mesh parameters on FE simulation of severe shot peening (SSP) aimed at generating nano crystallized surface layer[J]. Procedia Engineering, 2011, 10: 2923 − 2930. doi: 10.1016/j.proeng.2011.04.485
|
Kim T, Lee H, Hyun H C, et al. A simple but effective FE model with plastic shot for evaluation of peening residual stress and its experimental validation[J]. Materials Science and Engineering:A, 2011, 528(18): 5945 − 5954. doi: 10.1016/j.msea.2011.04.012
|
Klemenz M, Schulze V, Rohr I, et al. Application of the FEM for the prediction of the surface layer characteristics after shot peening[J]. Journal of Materials Processing Technology, 2009, 209: 4093 − 4102. doi: 10.1016/j.jmatprotec.2008.10.001
|
Zheng J, Ince A, Tang L. Modeling and simulation of weld residual stresses and ultrasonic impact treatment of welded joints[J]. Procedia Engineering, 2018, 213: 36 − 47. doi: 10.1016/j.proeng.2018.02.005
|
李栋. 正面随焊超声冲击对焊接残余应力与变形的影响[D]. 济南: 山东大学, 2017
Li Dong. Effect of ultrasonic impact on welding residual stress and deformation during frontal follow-up welding[D]. Jinan: Shandong University, 2017.
|
吴奇, 李晓延, 王小鹏,等. 热处理工艺参数对2219铝合金焊接接头残余应力的影响[J]. 热加工工艺, 2021, 50(1): 131 − 135.
Wu Qi, Li Xiaoyan, Wang Xiaopeng, et al. Effect of heat treatment process parameters on residual stress of 2219 aluminum alloy welded joint[J]. Hot Working Process, 2021, 50(1): 131 − 135.
|
白慧光. 7075铝合金双曲率构件时效成形规律及有限元分析[D]. 南昌: 南昌航空大学, 2019.
Bai Huiguang. Aging forming law and finite element analysis of 7075 aluminum alloy double curvature components[D]. Nanchang: Nanchang Aviation University, 2019.
|
何武豪, 刘大海, 黎俊初. 7075铝合金蠕变时效成形有限元分析[J]. 热加工工艺, 2016, 45(19): 149 − 152.
He Wuhao, Liu Dahai, Li Junchu. Finite element analysis of creep aging forming of 7075 aluminum alloy[J]. Hot Working Process, 2016, 45(19): 149 − 152.
|