Advanced Search
ZOU Zongxuan, LIU Zhengjun, HAN Xu. Effect of W on microstructure and properties of Fe-Cr-C-W-B surfacing alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(7): 91-96. DOI: 10.12073/j.hjxb.20210208001
Citation: ZOU Zongxuan, LIU Zhengjun, HAN Xu. Effect of W on microstructure and properties of Fe-Cr-C-W-B surfacing alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(7): 91-96. DOI: 10.12073/j.hjxb.20210208001

Effect of W on microstructure and properties of Fe-Cr-C-W-B surfacing alloy

  • The service life of mechanical equipment will be reduced due to wear, so the wear resistance of materials should be improved to increase the service time of mechanical equipment. Fe-Cr-C-W-B surfacing alloy was prepared by open arc surfacing with he submerged arc welding machine. The changes of hard phase quantity and wear resistance of surfacing alloy after changing the mass proportion of W in flux-cored wire were analyzed under certain test conditions. The results show that when the W content increases, the proportion of the hard phase in the surfacing layer increases, thereby significantly improving its hardness and wear resistance. When the mass fraction of metal W in the surfacing layer is 2.73%, the surfacing layer mainly contains tungsten hard phases of FeWB, Fe2W, FeW3C. When W content of the surfacing layer is 5.47%, the wear resistance of the surfacing layer reaches the best, the wear amount is 0.382 5 g, and the hardness is 61.63 HRC. When W content of the surfacing layer is 6.35%, the hardness of the surfacing layer reaches the highest 64.22 HRC, the wear extent is 0.418 2 g. As the hardenability of the surfacing layer increases, the hard phase is easy to fall off during the wear process, so the wear resistance decreases slightly. In order to obtain better wear resistance, the W mass fraction should be controlled at about 5.47% .
  • loading

Catalog

    Turn off MathJax
    Article Contents

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return