Citation: | ZHOU Fan, WANG Xue, SUN Songtao, GUO Meihua. Effect of heating rate on temperature field of local post weld heat treatment of P91 steel pipe and parameter optimization[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(10): 29-34. DOI: 10.12073/j.hjxb.20210126004 |
Maddi L, Ballal A R, Peshwe D R, et al. Effect of tempering temperature on the stress rupture properties of Grade 92 steel[J]. Materials Science & Engineering A, 2015, 639: 431 − 438.
|
Bu Fanhui, Xu Lianyong, Jin Hongyang, et al. Influence of the repair length on the residual stress in P92 steel repair welds[J]. China Welding, 2020, 29(2): 17 − 22.
|
Pandey C, Mahapatra M M, Kumar P, et al. Role of evolving microstructure on the mechanical behaviour of P92 steel welded joint in as-welded and post weld heat treated state[J]. Journal of Materials Processing Technology, 2019, 263: 241 − 255. doi: 10.1016/j.jmatprotec.2018.08.032
|
Deepshree D Awale, Atul R Ballal, Manjusha M Thawre, et al. Microstructural investigation and mechanical properties evaluation using miniature specimen testing of various constituents of dissimilar weld joint[J]. Journal of Nuclear Materials, 2020, 532: 152048. doi: 10.1016/j.jnucmat.2020.152048
|
Pandey C, Mahapatra M M, Kumar P. Characterisation of dissimilar P91 and P92 steel welds joint[J]. Materials at High Temperatures, 2018, 36(4): 1 − 10.
|
Wang Xue, Zheng Jiangpeng, Shang Wei, et al. Prediction of Ac1 temperature in P92 steel weld metal[J]. China Welding, 2012, 21(4): 8 − 14.
|
Pandey C, Mahapatra M M, et al. Some studies on P91 steel and their weldments[J]. Journal of Alloys and Compounds: An Interdisciplinary Journal of Materials Science and Solid-state Chemistry and Physics, 2018, 743: 332 − 364.
|
Nishikawa S, Hasegawa T, Takahashi M. Effect of PWHT conditions on toughness and creep rupture strength in modified 9Cr-1Mo steel welds[J]. High Temperature Materials and Processes, 2019, 38: 739 − 749. doi: 10.1515/htmp-2019-0031
|
国家能源局. 火力发电厂焊接热处理技术规程 DL/T819—2019[S]. 北京: 中国电力出版社, 2019
National Energy Administration. The code of the welding heat treatment for power plant DL/T819—2019[S]. Beijing: China Electric Power Press, 2019.
|
王学, 胡磊, 陈东旭, 等. 管内空气流动对大口径厚壁P92管道局部焊后热处理温度场的影响[J]. 焊接学报, 2016, 37(11): 104 − 108.
Wang Xue, Hu Lei, Chen Dongxu, et al. Effect of internal air flow on local post weld heat treatment for large diameter P92 steel welded pipes[J]. Transactions of the China Welding Institution, 2016, 37(11): 104 − 108.
|
Sambamurthy E, Dutta S, Panda A K, et al. Evaluation of post-weld heat treatment behavior in modified 9Cr–1Mo steel weldment by magnetic Barkhausen emission[J]. International Journal of Pressure Vessels & Piping, 2014, 123-124: 86 − 91.
|
许乐, 温建峰, 涂善东. P92钢焊接接头蠕变损伤与裂纹扩展数值模拟[J]. 焊接学报, 2019, 40(8): 80 − 88.
Xu Le, Wen Jianfeng, Tu Shandong. Numerical simulations of creep damage and crack growth in P92 steel welded joints[J]. Transactions of the China Welding Institution, 2019, 40(8): 80 − 88.
|
胡磊, 王学, 孟庆云, 等. 9%Cr钢厚壁管道局部焊后热处理温度场的数值模拟[J]. 焊接学报, 2015, 36(12): 13 − 16.
Hu Lei, Wang Xue, Meng Qingyun, et al. Numerical simulation of temperature field in 9%Cr steel thick-wall pipe in local PWHT[J]. Transactions of the China Welding Institution, 2015, 36(12): 13 − 16.
|
Netherlands Standardization Institute. Rules for pressure vessels[S]. The Hague: Sdu Publishers, 1992.
|
[1] | YE Jiabao, LI Xiaohong, DENG Yunhua, XIE Zhiyi, WEN Yanzhen. Microstructure and properties of vacuum brazing interface of TiBw/TA15 titanium matrix composites[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(6): 111-119. DOI: 10.12073/j.hjxb.20220811001 |
[2] | GUO Min, LEI Yuzhen, ZHAO Jian, SONG Xiaoguo, YU Zhishui, SHI Mingxiao. Interfacial microstructure and mechanical property of Ti60 and TC4 joint brazed with Cu75Pt filler metal[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(2): 40-44. DOI: 10.12073/j.hjxb.20210918001 |
[3] | LONG Fei, SHI Qingyu, LU Quanbin, LIN Tiesong, HE Peng. Effect of Cr on properties of TZM alloy joints brazed with Mo-45Ni brazing filler metal[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(10): 55-61. DOI: 10.12073/j.hjxb.20210329001 |
[4] | BIAN Hong1, TIAN Xiao2, FENG Jicai1, GAO Feng1, HU Shengpeng1. Interfacial microstructure and mechanical properties of TC4/Ti60 brazed joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(5): 33-36,68. DOI: 10.12073/j.hjxb.2018390117 |
[5] | LIU Duo, NIU Hongwei, ZHAO Yu, SONG Xiaoguo, FENG Jicai, ZHAO Hongyun. Research on microstructure and mechanical properties of Cf/LAS composite brazed joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2017, 38(2): 105-108. |
[6] | CHEN Sijie, WEI Mingqiang, ZHAO Pifeng. Study on microstructure and property of aluminum matrix composites SiCP/Al6063 vacuum brazing joint with different holding time[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2015, 36(10): 87-90. |
[7] | FENG Guangjie, LI Zhuoran, Xu Kai, LIU Wenbo. Interface microstructure and mechanism of SiC ceramic vacuum brazed joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2014, 35(1): 13-16. |
[8] | WU Na, LI Yajiang, WANG Juan. Microstructure and properties of vacuum brazed joint between super-Ni/NiCr laminated composite and Cr18-Ni8 steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2013, (3): 41-44. |
[9] | HE Peng, YANG Xiujuan, FENG Jicai, LIU Hong. Effects of holding time on interface structure and bonding strength of brazed joint of hydrogenated TC4 titanium alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (2): 1-4. |
[10] | LIANG Ning, SHENG Yifu. Influence of active element Mg on joint properties of aluminum alloy vacuum brazing[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2007, (7): 61-64. |