Citation: | ZHOU Fan, WANG Xue, SUN Songtao, GUO Meihua. Effect of heating rate on temperature field of local post weld heat treatment of P91 steel pipe and parameter optimization[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(10): 29-34. DOI: 10.12073/j.hjxb.20210126004 |
Maddi L, Ballal A R, Peshwe D R, et al. Effect of tempering temperature on the stress rupture properties of Grade 92 steel[J]. Materials Science & Engineering A, 2015, 639: 431 − 438.
|
Bu Fanhui, Xu Lianyong, Jin Hongyang, et al. Influence of the repair length on the residual stress in P92 steel repair welds[J]. China Welding, 2020, 29(2): 17 − 22.
|
Pandey C, Mahapatra M M, Kumar P, et al. Role of evolving microstructure on the mechanical behaviour of P92 steel welded joint in as-welded and post weld heat treated state[J]. Journal of Materials Processing Technology, 2019, 263: 241 − 255. doi: 10.1016/j.jmatprotec.2018.08.032
|
Deepshree D Awale, Atul R Ballal, Manjusha M Thawre, et al. Microstructural investigation and mechanical properties evaluation using miniature specimen testing of various constituents of dissimilar weld joint[J]. Journal of Nuclear Materials, 2020, 532: 152048. doi: 10.1016/j.jnucmat.2020.152048
|
Pandey C, Mahapatra M M, Kumar P. Characterisation of dissimilar P91 and P92 steel welds joint[J]. Materials at High Temperatures, 2018, 36(4): 1 − 10.
|
Wang Xue, Zheng Jiangpeng, Shang Wei, et al. Prediction of Ac1 temperature in P92 steel weld metal[J]. China Welding, 2012, 21(4): 8 − 14.
|
Pandey C, Mahapatra M M, et al. Some studies on P91 steel and their weldments[J]. Journal of Alloys and Compounds: An Interdisciplinary Journal of Materials Science and Solid-state Chemistry and Physics, 2018, 743: 332 − 364.
|
Nishikawa S, Hasegawa T, Takahashi M. Effect of PWHT conditions on toughness and creep rupture strength in modified 9Cr-1Mo steel welds[J]. High Temperature Materials and Processes, 2019, 38: 739 − 749. doi: 10.1515/htmp-2019-0031
|
国家能源局. 火力发电厂焊接热处理技术规程 DL/T819—2019[S]. 北京: 中国电力出版社, 2019
National Energy Administration. The code of the welding heat treatment for power plant DL/T819—2019[S]. Beijing: China Electric Power Press, 2019.
|
王学, 胡磊, 陈东旭, 等. 管内空气流动对大口径厚壁P92管道局部焊后热处理温度场的影响[J]. 焊接学报, 2016, 37(11): 104 − 108.
Wang Xue, Hu Lei, Chen Dongxu, et al. Effect of internal air flow on local post weld heat treatment for large diameter P92 steel welded pipes[J]. Transactions of the China Welding Institution, 2016, 37(11): 104 − 108.
|
Sambamurthy E, Dutta S, Panda A K, et al. Evaluation of post-weld heat treatment behavior in modified 9Cr–1Mo steel weldment by magnetic Barkhausen emission[J]. International Journal of Pressure Vessels & Piping, 2014, 123-124: 86 − 91.
|
许乐, 温建峰, 涂善东. P92钢焊接接头蠕变损伤与裂纹扩展数值模拟[J]. 焊接学报, 2019, 40(8): 80 − 88.
Xu Le, Wen Jianfeng, Tu Shandong. Numerical simulations of creep damage and crack growth in P92 steel welded joints[J]. Transactions of the China Welding Institution, 2019, 40(8): 80 − 88.
|
胡磊, 王学, 孟庆云, 等. 9%Cr钢厚壁管道局部焊后热处理温度场的数值模拟[J]. 焊接学报, 2015, 36(12): 13 − 16.
Hu Lei, Wang Xue, Meng Qingyun, et al. Numerical simulation of temperature field in 9%Cr steel thick-wall pipe in local PWHT[J]. Transactions of the China Welding Institution, 2015, 36(12): 13 − 16.
|
Netherlands Standardization Institute. Rules for pressure vessels[S]. The Hague: Sdu Publishers, 1992.
|
[1] | LIU Jinhao, LI Jiachen, ZHANG Liangliang, WU Baosheng, LI Peng, DONG Honggang. Microstructural evolution and corrosion property of Al-Mg alloy friction stir welding joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(10): 8-18. DOI: 10.12073/j.hjxb.20231011002 |
[2] | Fenggui LU, Dean DENG, Yaqi WANG, Chendong SHAO. Application and development of numerical simulation technology in laser welding process[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(8): 87-94. DOI: 10.12073/j.hjxb.20220430001 |
[3] | Rui MA, Linchuan LIU, Yajun WANG, Jie BAI, Caiwang TAN, Xiaoguo SONG. Effect of solution temperature on the microstructure evolution and mechanical properties of laser powder bed melting GH3536 alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(8): 73-79. DOI: 10.12073/j.hjxb.20220504002 |
[4] | YU Shurong, CHENG Nengdi, HUANG Jiankang, YU Xiaoquan, FAN Ding. Relationship between thermal process and microstructure during additive manufacturing of double-electrode gas metal arc welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(8): 1-6. DOI: 10.12073/j.hjxb.2019400200 |
[5] | LI Bingru, ZHOU Jianping, XU Yan, BAO Yang. Three-dimensional numerical simulation and analysis of temperature field in metal welding deposition prototyping[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(3): 42-46. DOI: 10.12073/j.hjxb.2018390065 |
[6] | WANG Xijing, WEI Xueling, ZHANG Liangliang. Microstructural evolution and mechanical properties of friction stir welded 6082-T6 aluminum alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(3): 1-5. DOI: 10.12073/j.hjxb.2018390057 |
[7] | CHENG Donghai, CHEN Long, CHEN Yiping, HU Dean. Microstructure evolution of electron beam welded 5A90 aluminum lithium alloy during superplastic deformation[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2017, 38(6): 29-32,36. |
[8] | ZHANG Lei, LIU Changqing, YU Jingwei, HU Xihai, GONG Feng, JIN Guangri. Numerical analysis of microstructure evolution of coarse grained zone in sidewall during narrow gap submerged arc welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(4): 103-106. |
[9] | CHENG Donghai, HUANG Jihua, CHEN Yiping, HU Dean. Microstructure evolution characterization of superplastic deformation of titanium alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2012, (7): 89-92. |
[10] | MA Rui, DONG Zhibo, WEI Yanhong, ZHAN Xiaohong. Simulation of solidification microstructure evolution in molten pool of nickel base alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2010, (7): 43-46. |
1. |
王志鹏,朱明亮,轩福贞. CrMoV与NiCrMoV异种钢焊接接头的高周疲劳性能及寿命模型. 焊接学报. 2024(07): 67-73 .
![]() |