Advanced Search
ZHU Yuanhao, WU Baosheng, GUO Baizheng, LI Peng, DONG Honggang. Effect of filler metals on microstructure and properties of T2 copper/316L stainless steel GTAW joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(6): 13-21. DOI: 10.12073/j.hjxb.20210108003
Citation: ZHU Yuanhao, WU Baosheng, GUO Baizheng, LI Peng, DONG Honggang. Effect of filler metals on microstructure and properties of T2 copper/316L stainless steel GTAW joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(6): 13-21. DOI: 10.12073/j.hjxb.20210108003

Effect of filler metals on microstructure and properties of T2 copper/316L stainless steel GTAW joint

More Information
  • Received Date: January 07, 2021
  • Available Online: August 16, 2021
  • T2 copper/316L stainless steel dissimilar joints were produced by gas tungsten arc welding with Cu filler wire and 307Si filler wire, respectively. The effect of filler metals on microstructure, mechanical properties and corrosion resistance of the joints was investigated. The microstructure of copper/steel weld was largely affected by liquid phase separation between iron and copper. When Cu filler wire was used, Fe-rich spherulites formed by Fe-Cu primary liquid phase separation distributed in the weld. Inside the Fe-rich spherulites, minority Cu-rich spheres formed by secondary liquid phase separation. However, when 307Si filler wire was used, the primary liquid phase separated Cu-rich spherulites showed no characteristic of secondary liquid phase separation. The tensile specimens achieved by both filler wires fractured at HAZ on the copper side, and the strength of each joints reached at least 80% of Cu base metal. Dimples and stretched zone were distributed on the fracture, showing the ductile fracture mode. Compared to the joint achieved by 307Si filler wire, the joint achieved by Cu filler had larger corrosion depth and corrosion current density, showing an inferior corrosion resistance.
  • Akhtar Awais, Dong Honggang, Xia Yueqing, et al. Lap joining 5052 aluminum alloy to Ti6Al4V titanium alloy by GTAW process with AlSi12 filler wire[J]. China Welding, 2020, 29(3): 1 − 8.
    马潇天, 闫德俊, 孟祥晨, 等. 铝/钢搅拌摩擦焊金属间化合物调控研究进展[J]. 焊接学报, 2020, 41(7): 1 − 11. doi: 10.12073/j.hjxb.20200617001

    Ma Xiaotian, Yan Dejun, Meng Xiangchen, et al. Progress on the control of intermetallic compounds in aluminum/steel friction stir welding[J]. Transactions of the China Welding Institution, 2020, 41(7): 1 − 11. doi: 10.12073/j.hjxb.20200617001
    王志刚. 气化炉SA387Gr11Cl2与316L异种钢的焊接工艺研究[J]. 压力容器, 2021, 38(3): 18 − 24. doi: 10.3969/j.issn.1001-4837.2021.03.003

    Wang Zhigang. Study on welding process of SA387Gr11Cl2 and 316L dissimilar steel of gasifier[J]. Pressure Vessel Technology, 2021, 38(3): 18 − 24. doi: 10.3969/j.issn.1001-4837.2021.03.003
    Yingyot P, Samrerng D, Denchay B, et al. Gas tungsten arc welding of copper to stainless steel for ultra-high vacuum applications[J]. Journal of Materials Processing Technology, 2020, 277: 116490. doi: 10.1016/j.jmatprotec.2019.116490
    Wang Y, Li X, Wang Xiao, et al. Fabrication of a thick copper-stainless steel clad plate for nuclear fusion equipment by explosive welding[J]. Fusion Engineering and Design, 2018, 137: 91 − 96. doi: 10.1016/j.fusengdes.2018.08.017
    Nguyen Q, Azadkhou A, Akbari M, et al. Experimental investigation of temperature field and fusion zone microstructure in dissimilar pulsed laser welding of austenitic stainless steel and copper[J]. Journal of Manufacturing Processes, 2020, 56: 206 − 215. doi: 10.1016/j.jmapro.2020.03.037
    Li J, Cai Y, Yan F, et al. Porosity and liquation cracking of dissimilar Nd: YAG laser welding of SUS304 stainless steel to T2 copper[J]. Optics and Laser Technology, 2020, 122: 105881. doi: 10.1016/j.optlastec.2019.105881
    Magnabosco I, Ferro P, Bonollo F, et al. An investigation of fusion zone microstructures in electron beam welding of copper–stainless steel[J]. Materials Science and Engineering: A, 2006, 424: 163 − 173. doi: 10.1016/j.msea.2006.03.096
    Qi Y, Wang L, Wang S, et al. Structural and dynamical heterogeneity of undercooled Fe75Cu25 melts with miscibility gap[J]. Journal of Alloys and Compounds, 2014, 615: 962 − 968. doi: 10.1016/j.jallcom.2014.07.022
    Liu S, Jie J, Guo Z, et al. Solidification microstructure evolution and its corresponding mechanism of metastable immiscible Cu80Fe20 alloy with different cooling conditions[J]. Journal of Alloys and Compounds, 2018, 742: 99 − 106. doi: 10.1016/j.jallcom.2018.01.306
    Liu S, Jie J, Dong B, et al. Novel insight into evolution mechanism of second liquid-liquid phase separation in metastable immiscible Cu-Fe alloy[J]. Materials and Design, 2018, 156: 71 − 81. doi: 10.1016/j.matdes.2018.06.044
    Chen S, Huang J, Xia J, et al. Microstructural characteristics of a stainless steel/copper dissimilar joint made by laser welding[J]. Metallurgical and Materials Transactions A, 2013, 44A: 3690 − 3696.
    Cheng Z, Huang J, Ye Z, et al. Microstructures and mechanical properties of copper-stainless steel buttwelded joints by MIG-TIG double-sided arc welding[J]. Journal of Materials Processing Technology, 2019, 265: 87 − 98. doi: 10.1016/j.jmatprotec.2018.10.007
    Meng Y, Li X, Gao M, et al. Microstructures and mechanical properties of laser-arc hybrid welded dissimilar pure copper to stainless steel[J]. Optics and Laser Technology, 2019, 111: 140 − 145. doi: 10.1016/j.optlastec.2018.09.050
    Wang C P, Liu X J, Ohnuma I, et al. Thermodynamic database of the phase diagrams in Cu-Fe base ternary systems[J]. Journal of Phase Equilibria and Diffusion, 2004, 25: 320 − 328. doi: 10.1007/s11669-004-0150-5
    Cao S, Zhao J C. Determination of the Fe-Cr-Mo phase diagram at intermediate temperatures using dual-anneal diffusion multiples[J]. Journal of Phase Equilibria and Diffusion, 2016, 37: 25 − 38. doi: 10.1007/s11669-015-0423-1
    Gao X L, Li L K, Liu J, et al. Effect of laser offset on microstructure and mechanical properties of laser welding of pure molybdenum to stainless steel[J]. International Journal of Refractory Metals & Hard Materials, 2020, 88: 105186.
    Yang Y, Busby J T. Thermodynamic modeling and kinetics simulation of precipitate phases in AISI 316 stainless steels[J]. Journal of Nuclear Materials, 2014, 448: 282 − 293. doi: 10.1016/j.jnucmat.2014.02.008
    Wu Y H, Wang W L, Chang J, et al. Evolution kinetics of microgravity facilitated spherical macrosegregation within immiscible alloys[J]. Journal of Alloys and Compounds, 2018, 763: 808 − 814. doi: 10.1016/j.jallcom.2018.06.022
    Alvaro M, Stefan K, Diego N, et al. Solutal Marangoni flow as the cause of ring stains from drying salty colloidal drops[J]. Physical Review Fluids, 2019, 4: 041601. doi: 10.1103/PhysRevFluids.4.041601
    Ebara R, Takeda K, Ishibashi Y, et al. Microfractography in failure analysis of cold forging dies[J]. Engineering Failure Analysis, 2009, 16: 1968 − 1976. doi: 10.1016/j.engfailanal.2008.10.023
    San X Y, Zhang B, Wua B, et al. Investigating the effect of Cu-rich phase on the corrosion behavior of Super 304H austenitic stainless steel by TEM[J]. Corrosion Science, 2018, 130: 143 − 152. doi: 10.1016/j.corsci.2017.11.001
    Chen Y, Wang Y, Zhou L, et al. Macro-galvanic effect and its influence on corrosion behaviors of friction stir welding joint of 7050-T76 Al alloy[J]. Corrosion Science, 2020, 164: 108360. doi: 10.1016/j.corsci.2019.108360
  • Related Articles

    [1]HE Yanming, LIANG Jiabin, ZHANG Chengyin, SHI Lei, JIN Xia, LV Chuanyang1, LI Huaxin. Microstructure and mechanical properties of high-quality AlN/Cu joints brazed by a novel AgCuTi+Y2O3 composite brazing alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION. DOI: 10.12073/j.hjxb.20240618002
    [2]GAO Yan, CUI Li, CHANG Yaoqing, GU Changshi, HE Dingyong. Microstructures and properties of fiber laser-MIG hybrid welded joints for marine corrosion resistant steel DH36[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(5): 60-66. DOI: 10.12073/j.hjxb.2019400128
    [3]XIAO Xiaoming, PENG Yun, MA Chengyong, TIAN Zhiling. Effect of heat input on microstructure and properties of weld metal in MAG welding of weathering steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2017, 38(6): 41-46.
    [4]HE Xiaomei, WANG Yaomian, ZHANG Conghui. Influence of high energy shot peening on microstructure and properties of TC4 welded joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(6): 40-44.
    [5]MENG Junsheng, JI Zesheng. Microstructure and properties of in-situ TiC-TiB2/Ti composite coating by argon arc cladding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2013, (9): 67-70.
    [6]YAN Jianhui, MA Sujuan, LIU Longfei, TANG Siwen. Effect of doped CeO2 on properties of nano-ZrO2-Y2O3 coatings[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2012, (10): 75-78.
    [7]WEI Jinshan, QI Yanchang, PENG Yun, TIAN Zhilin. Effect of heat input on the microstructure and properties of weld metal welding in a 800 MPa grade heavy steel plate with narrow gap groove[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2012, (6): 31-34.
    [8]QI Yanchang, PENG Yun, WEI Jinshan, TIAN Zhiling. Effect of carbon on microstructure and properties of C-1.5Mn-2.5Ni-0.5Cr-0.5Mo high strength steel weld metal[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2010, (11): 41-44.
    [9]ZHANG Xiaoyong, GAO Huilin, ZHUANG Chuanjing, JI Lingkang. Influence of welding heat input on microstructure and properties of coarse grain heat-affected zone in X100 pipeline steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2010, (3): 29-32.
    [10]JIN Guo, XU Binshi, WANG Haidou, LI Qingfen, WEI Shicheng. Microstructure and properties of martensite stainless steel coating by different spraying methods[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2006, (8): 39-42.
  • Cited by

    Periodical cited type(2)

    1. 王永东,王金宇,常萌阳. Y_2O_3对原位自生TiC-TiB_2增强镍基复合涂层组织与性能的影响. 黑龙江科技大学学报. 2024(02): 230-236 .
    2. 张宇鹏,王永东,徐刚,宫书林,汤明日,王磊. 石墨烯对激光熔覆Ti-C-Nb增强Ni基涂层组织与性能的影响. 激光与光电子学进展. 2022(01): 208-216 .

    Other cited types(1)

Catalog

    Article views (395) PDF downloads (35) Cited by(3)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return