Advanced Search
YANG Chengle, SHI Qingyu, WU Chuansong, CHEN Gaoqiang. Digital twin modeling method for temperature field of friction stir welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(3): 1-6. DOI: 10.12073/j.hjxb.20201228001
Citation: YANG Chengle, SHI Qingyu, WU Chuansong, CHEN Gaoqiang. Digital twin modeling method for temperature field of friction stir welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(3): 1-6. DOI: 10.12073/j.hjxb.20201228001

Digital twin modeling method for temperature field of friction stir welding

More Information
  • Received Date: December 27, 2020
  • Available Online: April 26, 2021
  • As the key technology of digitalization and intelligentization of manufacturing, the development of digital twins (DT) technology has put forward new requirements for new simulation methods. Real-time cyber-physics fusion is a key aspect of digital twins. Taking friction stir welding (FSW) as example, a novel iterative cyber-physical fusion algorithm to realize the real-time calculation of the 3D temperature field is established. The viability of real-time simulation of 3D temperature field in FSW is demonstrated. The result shows that the proposed algorithm has high reliability, and the average error of the temperature calculated based on the proposed algorithm relative to the measured temperature in experiment is within 5 ℃. It is interesting to mention that, if a time step of 1.5 s or 2.0 s is utilized, the calculation time will be shorter than the physical process of welding. This enables numerical simulation and FSW physical processes to be synchronized with a second-level temporal precision. It is proved that integrating real-time sensor data into numerical simulation model synchronizing with physical process can be a practical method of realizing digital twin modeling of welding process.
  • Tao F, Sui F Y, Liu A, et al. Digital twin-driven product design framework[J]. International Journal of Production Research, 2019, 57(12): 3935 − 3953. doi: 10.1080/00207543.2018.1443229
    Zhang M, Zuo Y, Tao F. Equipment energy consumption management in digital twin shop-floor: A framework and potential applications[C]//IEEE. 2018 IEEE 15th International Conference on Networking, Sensing and Control (ICNSC). Zhuhai, China, 2018: 1 − 5.
    Zheng Y, Yang S, Cheng H C. An application framework of digital twin and its case study[J]. Journal of Ambient Intelligence and Humanized Computing, 2019, 10(3): 1141 − 53. doi: 10.1007/s12652-018-0911-3
    Soderberg R, Warmefjord K, Carlson J S, et al. Toward a digital twin for real-time geometry assurance in individualized production[J]. Cirp Annals-Manufacturing Technology, 2017, 66(1): 137 − 140. doi: 10.1016/j.cirp.2017.04.038
    Knapp G L, Mukherjee T, Zuback J S, et al. Building blocks for a digital twin of additive manufacturing[J]. Acta Materialia, 2017, 135: 390 − 399. doi: 10.1016/j.actamat.2017.06.039
    Liu J L, Zhu H, Jiang Y, et al. Evolution of residual stress field in 6N01 aluminum alloy friction stir welding joint[J]. China Welding, 2018, 27(4): 18 − 26.
    马潇天, 闫德俊, 孟祥晨, 等. 铝/钢搅拌摩擦焊金属间化合物调控研究进展[J]. 焊接学报, 2020, 41(7): 1 − 11.

    Ma Xiaotian, Yan Dejun, Meng Xiangchen, et al. Progress on the control of intermetallic compounds in aluminum/steel friction stir welding[J]. Transactions of the China Welding Institution, 2020, 41(7): 1 − 11.
    曾申波, 陈高强, 张弓, 等. T形接头角接静轴肩搅拌摩擦焊三维流动特征[J]. 焊接学报, 2019, 40(12): 1 − 5.

    Zeng Shenbo, Chen Gaoqiang, Zhang Gong, et al. Three-dimensional flow characteristics of the T-joint by corner stationary shoulder friction stir welding[J]. Transactions of the China Welding Institution, 2019, 40(12): 1 − 5.
    Chen G Q, Zhang S, Zhu Y C, et al. Thermo-mechanical analysis of friction stir welding: a review on recent advances[J]. Acta Metallurgica Sinica-English Letters, 2020, 33(1): 3 − 12. doi: 10.1007/s40195-019-00942-y
    Schmidt H, Hattel J, WERT J. An analytical model for the heat generation in friction stir welding[J]. Modelling and Simulation in Materials Science and Engineering, 2004, 12(1): 143 − 57. doi: 10.1088/0965-0393/12/1/013
    Yang C Y. Inverse determination of heat input during the friction stir welding process[J]. International Journal of Heat and Mass Transfer, 2014, 76: 411 − 418. doi: 10.1016/j.ijheatmasstransfer.2014.04.036
    Lambiase F, Di Ilio A, Paoletti A. Hybrid numerical modeling of friction assisted joining[J]. Journal of Manufacturing Processes, 2020, 57: 233 − 243. doi: 10.1016/j.jmapro.2020.06.031
    Mishra R S, Ma Z Y. Friction stir welding and processing[J]. Materials Science and Engineering R, 2005, 50(1−2): 1 − 78. doi: 10.1016/j.mser.2005.07.001
    Nandan R, Debroy T, Bhadeshia H K D H. Recent advances in friction-stir welding-Process, weldment structure and properties[J]. Progress in Materials Science, 2008, 53(6): 980 − 1023. doi: 10.1016/j.pmatsci.2008.05.001
    Shi L, Wu C S, Liu H J. Modeling the material flow and heat transfer in reverse dual-rotation friction stir welding[J]. Journal of Materials Engineering and Performance, 2014, 23(8): 2918 − 2929. doi: 10.1007/s11665-014-1042-4
    Yan D Y, Wu A P, Silvanus J, et al. Predicting residual distortion of aluminum alloy stiffened sheet after friction stir welding by numerical simulation[J]. Materials & Design, 2011, 32(4): 2284 − 2291.
    Feng Z, Wang X L, David S A, et al. Modelling of residual stresses and property distributions in friction stir welds of aluminium alloy 6061-T6[J]. Science and Technology of Welding and Joining, 2007, 12(4): 348 − 356. doi: 10.1179/174329307X197610
  • Related Articles

    [1]ZONG Xuemei, WU Bin, ZHANG Liping, LI Wen. Numerical simulation of temperature field in weaving welding based on ladder model[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2014, 35(11): 9-12.
    [2]ZHOU Guangtao, GUO Guanglei, FANG Hongyuan. Numerical simulation of temperature field during laser-induced welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2014, 35(7): 22-26.
    [3]ZHANG Lei, QIN Guoliang, ZHANG Chunbo, ZHAO Yushan, ZHOU Jun. Numerical simulation of radial friction welding temperature field of steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2013, (11): 32-36.
    [4]ZHANG Xiaoqi, XU Guocheng, WANG Chunsheng, WEN Jing. Numerical simulation of the temperature field during resistance spot welding with rectangular electrode[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2009, (4): 101-104.
    [5]LUO Yi, LIU Jinhe, YE Hong, YAN Zhonglin, SHEN Bin. Numerical simulation on temperature field of electron beam welding of AZ61 magnesium alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2009, (3): 73-76.
    [6]WANG Qing, ZHANG Yanhua. Numerical simulation on electron beam welding temperature field of heat-resisting superalloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2007, (6): 97-100.
    [7]WANG Xi-jing, HAN Xiao-hui, Guo Rui-jie, LI Jing. Numerical simulation of temperature field in friction stir welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2005, (12): 17-20.
    [8]MENG Qing-guo, FANG Hong-yuan, XU Wen-li, JI Shu-de. Numerical simulation of muli-pass welding temperature field taking account of metal filling[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2004, (5): 53-55,59.
    [9]Wei Yanhong, Liu Renpei, Dong Zujue. Numerical Simulation of Temperature Fields for Weld Metal Solidification Cracking in Stainless Steels[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1999, (3): 199-204.
    [10]Zou Zengda, Wang Xinhong, Qu Shiyao. Numerical Simulation of Temperature Field for Weld-repaired Zone of White Cast Iron[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1999, (1): 24-29.
  • Cited by

    Periodical cited type(3)

    1. 李德福,王希靖,赵早龙,徐秋苹. 轴肩辅助加热6082铝合金摩擦塞补焊接头组织及力学性能. 焊接学报. 2022(01): 36-41+115 . 本站查看
    2. 熊俊珍,杨新岐,唐文珅,元惠新. 焊后热处理对X52管线钢水下摩擦塞焊接头断裂韧性的影响. 焊接. 2021(04): 1-7+62 .
    3. 赵慧慧,高焓,胡蓝,董吉义,尹玉环,崔雷. 2219铝合金薄板拉拔式摩擦塞焊工艺及力学性能优化. 焊接. 2021(06): 48-55+64 .

    Other cited types(2)

Catalog

    Article views (901) PDF downloads (144) Cited by(5)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return