Citation: | YANG Chengle, SHI Qingyu, WU Chuansong, CHEN Gaoqiang. Digital twin modeling method for temperature field of friction stir welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(3): 1-6. DOI: 10.12073/j.hjxb.20201228001 |
Tao F, Sui F Y, Liu A, et al. Digital twin-driven product design framework[J]. International Journal of Production Research, 2019, 57(12): 3935 − 3953. doi: 10.1080/00207543.2018.1443229
|
Zhang M, Zuo Y, Tao F. Equipment energy consumption management in digital twin shop-floor: A framework and potential applications[C]//IEEE. 2018 IEEE 15th International Conference on Networking, Sensing and Control (ICNSC). Zhuhai, China, 2018: 1 − 5.
|
Zheng Y, Yang S, Cheng H C. An application framework of digital twin and its case study[J]. Journal of Ambient Intelligence and Humanized Computing, 2019, 10(3): 1141 − 53. doi: 10.1007/s12652-018-0911-3
|
Soderberg R, Warmefjord K, Carlson J S, et al. Toward a digital twin for real-time geometry assurance in individualized production[J]. Cirp Annals-Manufacturing Technology, 2017, 66(1): 137 − 140. doi: 10.1016/j.cirp.2017.04.038
|
Knapp G L, Mukherjee T, Zuback J S, et al. Building blocks for a digital twin of additive manufacturing[J]. Acta Materialia, 2017, 135: 390 − 399. doi: 10.1016/j.actamat.2017.06.039
|
Liu J L, Zhu H, Jiang Y, et al. Evolution of residual stress field in 6N01 aluminum alloy friction stir welding joint[J]. China Welding, 2018, 27(4): 18 − 26.
|
马潇天, 闫德俊, 孟祥晨, 等. 铝/钢搅拌摩擦焊金属间化合物调控研究进展[J]. 焊接学报, 2020, 41(7): 1 − 11.
Ma Xiaotian, Yan Dejun, Meng Xiangchen, et al. Progress on the control of intermetallic compounds in aluminum/steel friction stir welding[J]. Transactions of the China Welding Institution, 2020, 41(7): 1 − 11.
|
曾申波, 陈高强, 张弓, 等. T形接头角接静轴肩搅拌摩擦焊三维流动特征[J]. 焊接学报, 2019, 40(12): 1 − 5.
Zeng Shenbo, Chen Gaoqiang, Zhang Gong, et al. Three-dimensional flow characteristics of the T-joint by corner stationary shoulder friction stir welding[J]. Transactions of the China Welding Institution, 2019, 40(12): 1 − 5.
|
Chen G Q, Zhang S, Zhu Y C, et al. Thermo-mechanical analysis of friction stir welding: a review on recent advances[J]. Acta Metallurgica Sinica-English Letters, 2020, 33(1): 3 − 12. doi: 10.1007/s40195-019-00942-y
|
Schmidt H, Hattel J, WERT J. An analytical model for the heat generation in friction stir welding[J]. Modelling and Simulation in Materials Science and Engineering, 2004, 12(1): 143 − 57. doi: 10.1088/0965-0393/12/1/013
|
Yang C Y. Inverse determination of heat input during the friction stir welding process[J]. International Journal of Heat and Mass Transfer, 2014, 76: 411 − 418. doi: 10.1016/j.ijheatmasstransfer.2014.04.036
|
Lambiase F, Di Ilio A, Paoletti A. Hybrid numerical modeling of friction assisted joining[J]. Journal of Manufacturing Processes, 2020, 57: 233 − 243. doi: 10.1016/j.jmapro.2020.06.031
|
Mishra R S, Ma Z Y. Friction stir welding and processing[J]. Materials Science and Engineering R, 2005, 50(1−2): 1 − 78. doi: 10.1016/j.mser.2005.07.001
|
Nandan R, Debroy T, Bhadeshia H K D H. Recent advances in friction-stir welding-Process, weldment structure and properties[J]. Progress in Materials Science, 2008, 53(6): 980 − 1023. doi: 10.1016/j.pmatsci.2008.05.001
|
Shi L, Wu C S, Liu H J. Modeling the material flow and heat transfer in reverse dual-rotation friction stir welding[J]. Journal of Materials Engineering and Performance, 2014, 23(8): 2918 − 2929. doi: 10.1007/s11665-014-1042-4
|
Yan D Y, Wu A P, Silvanus J, et al. Predicting residual distortion of aluminum alloy stiffened sheet after friction stir welding by numerical simulation[J]. Materials & Design, 2011, 32(4): 2284 − 2291.
|
Feng Z, Wang X L, David S A, et al. Modelling of residual stresses and property distributions in friction stir welds of aluminium alloy 6061-T6[J]. Science and Technology of Welding and Joining, 2007, 12(4): 348 − 356. doi: 10.1179/174329307X197610
|
[1] | ZONG Xuemei, WU Bin, ZHANG Liping, LI Wen. Numerical simulation of temperature field in weaving welding based on ladder model[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2014, 35(11): 9-12. |
[2] | ZHOU Guangtao, GUO Guanglei, FANG Hongyuan. Numerical simulation of temperature field during laser-induced welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2014, 35(7): 22-26. |
[3] | ZHANG Lei, QIN Guoliang, ZHANG Chunbo, ZHAO Yushan, ZHOU Jun. Numerical simulation of radial friction welding temperature field of steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2013, (11): 32-36. |
[4] | ZHANG Xiaoqi, XU Guocheng, WANG Chunsheng, WEN Jing. Numerical simulation of the temperature field during resistance spot welding with rectangular electrode[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2009, (4): 101-104. |
[5] | LUO Yi, LIU Jinhe, YE Hong, YAN Zhonglin, SHEN Bin. Numerical simulation on temperature field of electron beam welding of AZ61 magnesium alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2009, (3): 73-76. |
[6] | WANG Qing, ZHANG Yanhua. Numerical simulation on electron beam welding temperature field of heat-resisting superalloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2007, (6): 97-100. |
[7] | WANG Xi-jing, HAN Xiao-hui, Guo Rui-jie, LI Jing. Numerical simulation of temperature field in friction stir welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2005, (12): 17-20. |
[8] | MENG Qing-guo, FANG Hong-yuan, XU Wen-li, JI Shu-de. Numerical simulation of muli-pass welding temperature field taking account of metal filling[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2004, (5): 53-55,59. |
[9] | Wei Yanhong, Liu Renpei, Dong Zujue. Numerical Simulation of Temperature Fields for Weld Metal Solidification Cracking in Stainless Steels[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1999, (3): 199-204. |
[10] | Zou Zengda, Wang Xinhong, Qu Shiyao. Numerical Simulation of Temperature Field for Weld-repaired Zone of White Cast Iron[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1999, (1): 24-29. |
1. |
李德福,王希靖,赵早龙,徐秋苹. 轴肩辅助加热6082铝合金摩擦塞补焊接头组织及力学性能. 焊接学报. 2022(01): 36-41+115 .
![]() | |
2. |
熊俊珍,杨新岐,唐文珅,元惠新. 焊后热处理对X52管线钢水下摩擦塞焊接头断裂韧性的影响. 焊接. 2021(04): 1-7+62 .
![]() | |
3. |
赵慧慧,高焓,胡蓝,董吉义,尹玉环,崔雷. 2219铝合金薄板拉拔式摩擦塞焊工艺及力学性能优化. 焊接. 2021(06): 48-55+64 .
![]() |