Citation: | CHEN Jicheng, CHEN Xiaomei, CHANG Yiting, LIU Xuejun, WEI Yanhong. Melt flow and thermal transfer of welding pool during static magnetic field supported deep-penetration laser beam welding of 5056 aluminum alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(3): 63-69. DOI: 10.12073/j.hjxb.20201217003 |
黄坚, 李铸国, 唐新华. 中厚板的高功率激光焊接[J]. 航空制造技术, 2010(2): 26 − 29. doi: 10.3969/j.issn.1671-833X.2010.02.001
Huang Jian, Li Zhuguo, Tang Xinhua. High-power laser welding of plate[J]. Aeronautical Manufacturing Technology, 2010(2): 26 − 29. doi: 10.3969/j.issn.1671-833X.2010.02.001
|
韩晓辉, 马寅, 马国龙, 等. 双光束激光焊匙孔动态特征分析[J]. 焊接学报, 2020, 41(2): 93 − 96. doi: 10.12073/j.hzxb.20190811002
Han Xiaohui, Ma Yin, Ma Guolong, et al. Dynamic characteristic analysis of keyhole in double beam laser welding[J]. Transactions of the Chnia Welding Institutation, 2020, 41(2): 93 − 96. doi: 10.12073/j.hzxb.20190811002
|
Katayama S, Kawaguchi S, Mizutani M. Welding phenomena and in-process monitoring in high-power YAG laser welding of aluminium alloy[J]. Welding International, 2009, 23(10): 753 − 762. doi: 10.1080/09507110902836929
|
Nakamura H, Kawahito Y, Nishimoto K, et al. Elucidation of melt flows and spatter formation mechanisms during high power laser welding of pure titanium[J]. Journal of Laser Application, 2015, 27(3): 032012.
|
Avilov V V, Gumenyuk A, Lammers M, et al. PA position full penetration high-power laser beam welding of up to 30 mm thick AlMg3 plates using an electromagnetic weld pool support[J]. Science and Technology of Welding and Joining, 2012, 17(2): 128 − 133. doi: 10.1179/1362171811Y.0000000085
|
Kern M, Berger P, Hügel H. Magneto-fluid dynamic control of seam quality in CO2 laser beam welding[J]. Welding Journal, 2000, 79(3): 72 − 78.
|
Bachmann M, Avilov V V, Gumenyuk A, et al. About the influence of a steady magnetic field on weld pool dynamics in partial penetration high power laser beam welding of thick aluminium parts[J]. International Journal of Heat and Mass Transfer, 2013, 60: 309 − 321. doi: 10.1016/j.ijheatmasstransfer.2013.01.015
|
Rong Y M, Xu J J, Cao H Y, et al. Influence of steady magnetic field on dynamic behavior mechanism in full penetration laser beam welding[J]. Journal of Manufacturing Processing, 2017, 26: 399 − 406.
|
Cao L C, Liu D H, Jiang P, et al. Multi-physics simulation of dendrite growth in magnetic field assisted solidification[J]. International Journal of Heat and Mass Transfer, 2019, 144: 11867. doi: 10.1016/j.ijheatmasstransfer.2019.118673
|
Gatzen M, Tang Z. CFD-based model for melt flow in laser beam welding of aluminium with coaxial magnetic field[J]. Physics Procedia, 2010, 5: 317 − 326.
|
Bachmann M, Avilov V V, Gumenyuk A, et al. Numerical assessment and experimental verification of the influence of the Hartmann effect in laser beam welding processes by steady magnetic fields[J]. International Journal of Thermal Sciences, 2016, 101: 24 − 34. doi: 10.1016/j.ijthermalsci.2015.10.030
|
Chen J C, Wei Y H, Zhan X H, et al. Melt flow and thermal transfer during magnetically supported laser beam welding of thick aluminum alloy plates[J]. Journal of Materials Processing Technology, 2018, 254: 325 − 337.
|
Chen J C, Wei Y H, Zhan X H, et al. Influence of magnetic field orientation on molten pool dynamics during magnet-assisted laser butt welding of thick aluminum alloy plates[J]. Optics and Laser Technology, 2018, 104: 148 − 158. doi: 10.1016/j.optlastec.2018.02.020
|
[1] | MIAO Guanghong, AI Jiuying, HU Yu, MA Honghao, SHEN Zhaowu. Two-dimensional numerical simulation of boundary effect of explosive welding based on SPH method[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(9): 61-66. DOI: 10.12073/j.hjxb.20210203002 |
[2] | FANG Yuchao, YANG Ziyou, He Jingshan. Study on liquid metal flushing effect during electron beam spot welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(6): 137-142. DOI: 10.12073/j.hjxb.2019400168 |
[3] | LI Liqun, HAO Yu, PENG Jin. Effect of surface tension on flow in laser deep penetration welding molten pool[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(2): 13-19. DOI: 10.12073/j.hjxb.2019400034 |
[4] | XU Jie, LI Pengpeng, FAN Yu, SUN Zhi. Effect of temperature on fracture toughness in weld thermal simulated X80 pipeline steels[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2017, 38(1): 22-26. |
[5] | NIU Tao, HOU Hongliang, WANG Yaoqi, ZHOU Wenlong, WU Fan. Effect of high uniform magnetic field on joining property and element diffusion of 1420 Al-Li Alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(5): 1-5. |
[6] | CHEN Zhanglan, YE Jiawei. Non-linear influence of welding thermal effect on dynamic performance of structure[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2014, 35(4): 79-82. |
[7] | LUO Yi, LIU Jinhe, YE Hong. Numerical simulation on keyhole thermal effect of vacuum electron beam welding of magnesium alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2010, (12): 73-76. |
[8] | CHEN Yajun, WANG Zhiping, JI Zhaohui, DING Kunying, WANG Lijun. Effect of elements diffusion behavior on thermal fatigue of nickel based alloy coating deposited with thermal spraying[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (11): 61-64. |
[9] | ZHOU Jian-xin, XU Hong, WANG Jun-sheng, LI Dong-cai, ZHANG Li, LIU A-long. Effect of specimen dimension on welding residual stresses[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2006, (3): 96-100. |
[10] | ZHOU Qi, LIU Fang-jun, GUAN Qiao. Dynamic focal spot and extremum effect of deep penetration of electron beam[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2004, (4): 19-22. |
1. |
郭政伟,龙伟民,王博,祁婷,李宁波. 焊接残余应力调控技术的研究与应用进展. 材料导报. 2023(02): 148-154 .
![]() | |
2. |
张勇,唐家成,葛泽龙,綦秀玲. 随焊旋转冲击抑制30CrMnSi接头热影响区软化. 焊接学报. 2021(05): 84-89+103-104 .
![]() |