Citation: | CHEN Jicheng, CHEN Xiaomei, CHANG Yiting, LIU Xuejun, WEI Yanhong. Melt flow and thermal transfer of welding pool during static magnetic field supported deep-penetration laser beam welding of 5056 aluminum alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(3): 63-69. DOI: 10.12073/j.hjxb.20201217003 |
黄坚, 李铸国, 唐新华. 中厚板的高功率激光焊接[J]. 航空制造技术, 2010(2): 26 − 29. doi: 10.3969/j.issn.1671-833X.2010.02.001
Huang Jian, Li Zhuguo, Tang Xinhua. High-power laser welding of plate[J]. Aeronautical Manufacturing Technology, 2010(2): 26 − 29. doi: 10.3969/j.issn.1671-833X.2010.02.001
|
韩晓辉, 马寅, 马国龙, 等. 双光束激光焊匙孔动态特征分析[J]. 焊接学报, 2020, 41(2): 93 − 96. doi: 10.12073/j.hzxb.20190811002
Han Xiaohui, Ma Yin, Ma Guolong, et al. Dynamic characteristic analysis of keyhole in double beam laser welding[J]. Transactions of the Chnia Welding Institutation, 2020, 41(2): 93 − 96. doi: 10.12073/j.hzxb.20190811002
|
Katayama S, Kawaguchi S, Mizutani M. Welding phenomena and in-process monitoring in high-power YAG laser welding of aluminium alloy[J]. Welding International, 2009, 23(10): 753 − 762. doi: 10.1080/09507110902836929
|
Nakamura H, Kawahito Y, Nishimoto K, et al. Elucidation of melt flows and spatter formation mechanisms during high power laser welding of pure titanium[J]. Journal of Laser Application, 2015, 27(3): 032012.
|
Avilov V V, Gumenyuk A, Lammers M, et al. PA position full penetration high-power laser beam welding of up to 30 mm thick AlMg3 plates using an electromagnetic weld pool support[J]. Science and Technology of Welding and Joining, 2012, 17(2): 128 − 133. doi: 10.1179/1362171811Y.0000000085
|
Kern M, Berger P, Hügel H. Magneto-fluid dynamic control of seam quality in CO2 laser beam welding[J]. Welding Journal, 2000, 79(3): 72 − 78.
|
Bachmann M, Avilov V V, Gumenyuk A, et al. About the influence of a steady magnetic field on weld pool dynamics in partial penetration high power laser beam welding of thick aluminium parts[J]. International Journal of Heat and Mass Transfer, 2013, 60: 309 − 321. doi: 10.1016/j.ijheatmasstransfer.2013.01.015
|
Rong Y M, Xu J J, Cao H Y, et al. Influence of steady magnetic field on dynamic behavior mechanism in full penetration laser beam welding[J]. Journal of Manufacturing Processing, 2017, 26: 399 − 406.
|
Cao L C, Liu D H, Jiang P, et al. Multi-physics simulation of dendrite growth in magnetic field assisted solidification[J]. International Journal of Heat and Mass Transfer, 2019, 144: 11867. doi: 10.1016/j.ijheatmasstransfer.2019.118673
|
Gatzen M, Tang Z. CFD-based model for melt flow in laser beam welding of aluminium with coaxial magnetic field[J]. Physics Procedia, 2010, 5: 317 − 326.
|
Bachmann M, Avilov V V, Gumenyuk A, et al. Numerical assessment and experimental verification of the influence of the Hartmann effect in laser beam welding processes by steady magnetic fields[J]. International Journal of Thermal Sciences, 2016, 101: 24 − 34. doi: 10.1016/j.ijthermalsci.2015.10.030
|
Chen J C, Wei Y H, Zhan X H, et al. Melt flow and thermal transfer during magnetically supported laser beam welding of thick aluminum alloy plates[J]. Journal of Materials Processing Technology, 2018, 254: 325 − 337.
|
Chen J C, Wei Y H, Zhan X H, et al. Influence of magnetic field orientation on molten pool dynamics during magnet-assisted laser butt welding of thick aluminum alloy plates[J]. Optics and Laser Technology, 2018, 104: 148 − 158. doi: 10.1016/j.optlastec.2018.02.020
|
[1] | FU Kuijun, ZHAO Jingwei, GAO Mingze, LENG Xuesong, YAN Jiuchun. Grain growth and phase transformation in the welded joint HAZ of TiNbV microalloyed steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(3): 17-22. DOI: 10.12073/j.hjxb.20190715004 |
[2] | ZHENG Huaibei, YE Xiaoning, ZHANG Xuefeng, JIANG Laizhu, LIU Zhenyu, WANG Guodong. Microstructure transformation,grain growth and precipitated phase of 12%Cr ferritic stainless steel in coarse grain zone[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2011, (6): 37-40. |
[3] | ZHANG Genyuan, XU Maili, TIAN Songya, Wen Fang. Genetic algorithm of grain growth in heat-affected zone of 45 steel AC flash butt welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2009, (6): 79-82. |
[4] | LI Yubin, MENG Daqiao, LIU Kezhao, XIE Zhiqiang. Simulation of the microstructure evolution of welding-grain growth in heat affected zone[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2009, (1): 25-28,32. |
[5] | WU Wei, GAO Hongming, CHENG Guangfu, WU Lin. Grain growth in heat affected zone of fine grained titanium alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (10): 57-60, 64. |
[6] | ZHANG Guifeng, MIAO Huixia, ZHANG Jianxun, PEI Yi, WANG Jian, ZHANG Yantao. Effects of immediate water cooling and normalization after welding on microstructure and hardness of heat affected zone of ultra-fine grain steels welded joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2007, (12): 47-50. |
[7] | WEN Jun qin, LIU Xin tian, MO Chun li, ZHANG Shi xing. Microstructure simulation of grain growth in heat affected zone[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2003, (3): 48-51. |
[8] | QU Zhao-xia, TIAN Zhi-ling, DU Ze-yu. The HAZ Grain Growth Diagram of the New Generation Steel with Yield Strength 400 Mpa[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2002, (3): 29-31. |
[9] | QU Zhao-xia, TIAN Zhi-ling, DU Ze-yu, HE Chang-hong, ZHANG Xiao-mu, YANG Bai. Grain Growth in HAZ of Ultra-fine Grain Steels[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2000, (4): 9-12. |
[10] | SUN Jun-sheng, WU Chuan-song, Li Ya-jiang. Welding Heat Transfer of GMAW and Its Effects on Austenite Grain Growth Process in HAZ[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2000, (3): 27-31. |