Advanced Search
NIU Wentao, XIE Jilin, HUANG Yongde, ZHANG Hao, CHEN Yuhua. Effect of shoulder shape on axial force of friction stir welding of 6061 aluminum alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(7): 66-73. DOI: 10.12073/j.hjxb.20201210001
Citation: NIU Wentao, XIE Jilin, HUANG Yongde, ZHANG Hao, CHEN Yuhua. Effect of shoulder shape on axial force of friction stir welding of 6061 aluminum alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(7): 66-73. DOI: 10.12073/j.hjxb.20201210001

Effect of shoulder shape on axial force of friction stir welding of 6061 aluminum alloy

More Information
  • Received Date: December 09, 2020
  • Available Online: August 30, 2021
  • For the application of robotic FSW, the influence of shoulder shape on axial force during welding was researched. FSW of 6061-T6 aluminum alloy was successfully performed by tools with different shoulder shape of flat and concave. The axial force during welding was measured, recorded, and analyzed. The distribution and variation of axial force were analyzed comprehensively with the aid of an established stress model about the shoulder. The results were shown that weld morphology of the flat shoulder was better than that of the concave shoulder. The average axial force curve fluctuated zigzag in the stable welding stage, while the amplitude of zigzag with the flat shoulder was smaller than the concave shoulder. The lowest axial force was measured in rotating speed of 1 500 r/min and the welding speed of 95 mm/min, when the flat shoulder was used, the lowest axial force was 3 828 N, and the concave shoulder was 4 018.5 N. It was attributed of the lower heat input produced welding with concave shoulder and greater resistance to plastic flow of material. In addition, according to the force analysis, when the concave shoulder was used for welding, a certain axial force was added by the movement in the forward direction, which resulted in a larger axial force.
  • 刘西畅, 李文亚, 高彦军, 等. 铝合金双轴肩FSW过程材料流动行为[J]. 焊接学报, 2021, 42(3): 48 − 56. doi: 10.12073/j.hjxb.20201228002

    Liu Xichang, Li Wenya, Gao Yanjun, et al. Material flow behavior of aluminum alloy double shaft shoulder stir friction welding process[J]. Transactions of the China Welding Institution, 2021, 42(3): 48 − 56. doi: 10.12073/j.hjxb.20201228002
    董林, 李继忠, 栾国红. 机器人FSW发展现状与趋势[J]. 航空制造技术, 2014, 17 (5): 76 − 79.

    Dong Lin, Li Jizhong, Luan Guohong. Development of robotic friction stir welding technology[J]. Aeronautical Manufacturing Technology, 2014, 17 (5): 76 − 79.
    Cook G E, Crawford R, Clark D E, et al. Robotic friction stir welding[J]. Industrial Robot, 2004, 31(1): 55 − 63. doi: 10.1108/01439910410512000
    Soundararajan V, Valant M, Kovacevic R. An overview of R & D work in friction stir welding at SMU[J]. Metalurgija, 2006, 12(4): 275 − 295.
    周利, 刘会杰, 刘鹏. 搅拌头受力模型及应用[J]. 焊接学报, 2009, 30(3): 93 − 96. doi: 10.3321/j.issn:0253-360X.2009.03.024

    Zhou Li, Liu Huijie, Liu Peng. Tool force model and application[J]. Transactions of the China Welding Institution, 2009, 30(3): 93 − 96. doi: 10.3321/j.issn:0253-360X.2009.03.024
    Zhang Z, Zhang H. Numerical studies on effect of axial pressure in friction stir welding[J]. Science and Technology of Welding and Joining, 2007, 12(3): 226 − 248. doi: 10.1179/174329307X177919
    张昊. 低轴向力机器人FSW工艺基础研究[D]. 南昌: 南昌航空大学, 2018.

    Zhang Hao. Basic research on friction stir welding of low axial force robot[D]. Nanchang: Nanchang Hangkong University, 2018.
    李程锦, 王陆钊, 刘其鹏, 等. 搅拌头几何参数及倾角对FSW接质量影响的数值分析[J]. 大连交通大学学报, 2017, 38(5): 70 − 74.

    Li Chengjin, Wang Luzhao, Liu Qipeng, et al. Numerical analysis of tool geometric parameters and tilted angle impact on quality of FSW[J]. Journal of Dalian Jiaotong University, 2017, 38(5): 70 − 74.
    张成行, 曹宇, 曹玲飞, 等. 异种铝合金FSW接头的显微组织、力学及腐蚀性能[J]. 中国有色金属学报, 2019, 29(10): 2255 − 2265.

    Zhang Chengxing, Cao Yu, Cao Lingfei, et al. Microstructure, mechanical and corrosion properties of dissimilar friction stir welded aluminum alloys joints[J]. Transactions of Nonferrous Metals Society of China, 2019, 29(10): 2255 − 2265.
    廖美玲. 轴肩形貌对FSW缝金属塑性流动及组织性能的影响[D]. 南昌: 南昌航空大学, 2015.

    Liao Meiling. Effect of shoulder morphology on plastic flow and tissue properties of stir friction weld metal[D]. Nanchang: Nanchang Hangkong University, 2015.
    张忠科, 王希靖. 搅拌头形状对搅拌头受力和温度的影响[J]. 兰州理工大学学报, 2010, 36(4): 17 − 20. doi: 10.3969/j.issn.1673-5196.2010.04.005

    Zhang Zhongke, Wang Xijing. Effect of tool shape on the force and temperature of stirring head[J]. Journal of Lanzhou University of Technology, 2010, 36(4): 17 − 20. doi: 10.3969/j.issn.1673-5196.2010.04.005
    张威, 潘杨, 韩锐, 等. FSW接过程搅拌头几何对搅拌头受力的影响[J]. 应用物理, 2019, 9(4): 169 − 176. doi: 10.12677/APP.2019.94021

    Zhang Wei, Pan Yang, Han Rui, et al. The Influence of tool geome-try on the force exerted on the tool in friction stir welding[J]. Applied Physics, 2019, 9(4): 169 − 176. doi: 10.12677/APP.2019.94021
    Zhao Pengcheng, Shen Yixiang, Huang Guoqiang. Numerical simulation of stir friction butt welding of 6061 aluminum alloy[J]. Chinese Journal of Nonferrous Metals (English Edition), 2018, 28(6): 1216-1225.
    杨素媛, 张保垒. 厚板AZ31镁合金搅拌摩擦焊焊接接头的组织与性能[J]. 焊接学报, 2009, 30(5): 1 − 4. doi: 10.3321/j.issn:0253-360X.2009.05.001

    Yang Suyuan, Zhang Baolei. Organization and properties of stir friction welded joints of thick plate AZ31 magnesium alloy[J]. Transactions of the China Welding Institution, 2009, 30(5): 1 − 4. doi: 10.3321/j.issn:0253-360X.2009.05.001
    朱海, 孙龙, 彭春明, 等. 6061铝合金接头成形质量及性能与FSW工艺参数关系的研究[J]. 焊接, 2017(7): 45 − 48.

    Zhu Hai, Sun Long, Peng Chunming, , et al. Study on the relationship between forming quality and performance of 6061 aluminum alloy joints and friction stir welding process parameters[J]. Welding & Joining, 2017(7): 45 − 48.
    Rajneesh Kumar, Kanwer Singh, Sunil Pandey. Effect of stir friction welding process parameters on the force and heat input to the stirring head of AA5083 aluminum alloy[J]. Transactions of Nonferrous Metals Society of China, 2012, 22(2): 288 − 298. doi: 10.1016/S1003-6326(11)61173-4
    曹丽杰, 潘荣秀, 郑钟盛. 铝合金FSW插入工艺参数对轴向力和扭矩的影响[J]. 轻合金加工技术, 2011, 39(10): 55 − 58, 62. doi: 10.3969/j.issn.1007-7235.2011.10.010

    Cao Lijie, Pan Rongxiu, Zheng Zhongsheng. Effect of inserting process parameters on axial force and torque occurred during FSW of aluminum alloy[J]. Light Alloy Fabrication Technology, 2011, 39(10): 55 − 58, 62. doi: 10.3969/j.issn.1007-7235.2011.10.010
    Yang Min, Bao Ruijun, Liu Xiuzhong, et al. Thermo-mechanical interaction between aluminum alloy and tools with different profiles during friction stir welding[J]. Transactions of Nonferrous Metals Society of China, 2019, 29(3): 495 − 506. doi: 10.1016/S1003-6326(19)64958-7
    柯黎明, 潘际銮, 邢丽, 等. FSW焊缝金属塑性流动的抽吸-挤压理论[J]. 机械工程学报, 2009, 45(4): 89 − 94. doi: 10.3901/JME.2009.04.089

    Ke Liming, Pan Jiluan, Xing Li, et al. Sucking-extruding theory for the material flow in friction stir welds[J]. Journal of Mechanical Engineering, 2009, 45(4): 89 − 94. doi: 10.3901/JME.2009.04.089
    赵亚东, 沈长斌, 刘书华, 等. 5083铝合金搅拌摩擦焊焊缝的电化学腐蚀行为[J]. 大连交通大学学报, 2008, 22(4): 70 − 73.

    Zhao Yadong, Shen Changbin, Liu shuhua, et al. Electrochemical corrosion behavior of stir friction welded joints of 5083 aluminum alloy[J]. Journal of Dalian Jiaotong University, 2008, 22(4): 70 − 73.
    Kim Y P, Kim C H, Kim Y G, et al. Trends of technology development of friction stir welding machine[J]. Journal of Welding and Joining, 2016, 34(3): 1 − 5. doi: 10.5781/JWJ.2016.34.3.1
    Giorgi M D, Scialpi A, Panella F W, et al. Effect of shoulder geometry on residual stress and fatigue properties of AA6082 FSW joints[J]. Journal of Mechanical Science and Technology, 2009, 23(1): 26 − 35. doi: 10.1007/s12206-008-1006-4
    王希靖, 张忠科, 韩道彬, 等. FSW中摩擦头前进阻力的检测及分析[J]. 焊接学报, 2010, 31(4): 1 − 4.

    Wang Xijing, Zhang Zhongke, Han Daobin, et al. Measurements and analysis of onward force on stir-pin in FSW process[J]. Transactions of the China welding Institution, 2010, 31(4): 1 − 4.
  • Related Articles

    [1]ZHANG Yingchuan, MA Guodong, DAI Peng, WANG Jingshui, JIN Wei. Tool design and process analysis of bobbing tool friction stir welding for thin-walled extrude profile of 6061-T6 aluminum alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(6): 88-95. DOI: 10.12073/j.hjxb.20210512001
    [2]QIN Feng, ZHANG Chunbo, ZHOU Jun, WU Yanquan, LIANG Wu, WU Ruizhi. Microstructure and properties of 5A06 aluminum alloy T-joints welded by stationary shoulder friction stir welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(6): 56-60, 95. DOI: 10.12073/j.hjxb.20220201001
    [3]GAO Shikang, ZHOU Li, ZHANG Xinmeng, ZHANG Junfeng, LI Gaohui, ZHAO Hongyun. Microstructure and properties of friction stir welded joints for 6061-T6/7075-T6 dissimilar aluminum alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(6): 35-42. DOI: 10.12073/j.hjxb.20210616003
    [4]LIN Wei, YANG Xinqi, XIONG Junzhen, LIU Kaixuan. Effects of axial force on microstructures and mechanical properties of underwater friction taper plug welding for dissimilar steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(1): 26-31. DOI: 10.12073/j.hjxb.2019400006
    [5]HE Fangzhou1, YANG Xinqi1, LI Dongxiao2, CUI Lei1. Effect of microstructural inhomogeneity on mechanical properties of stationary shoulder friction stir welded joints for 6061-T6 aluminum alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2017, 38(8): 115-118. DOI: 10.12073/j.hjxb.20150808004
    [6]MAO Yuqing, KE Liming, LIU Fencheng, CHEN Yuhua, XING Li. Effect of pin surface profile on axial flow behavior of plastic material in friction stir welds[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2017, 38(6): 19-24.
    [7]MAO Yuqing, KE Liming, HUANG Bin, LIU Fencheng. Effect of shoulder profile on plastic flow of weld metal in aluminum alloys friction stir welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2017, 38(3): 27-32.
    [8]ZHANG Jin, JI Pengfei, ZHOU Jun, LIAN Yong. Effect of shoulder diameter on microstructure of dissimilar Al alloys friction stir welding joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(11): 51-54.
    [9]SHEN Hao, YANG Xinqi, LI Dongxiao, CUI Lei. Microstructures and mechanical properties of 6061-T6 aluminum alloy welded by stationary shoulder friction stir welding process[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(5): 119-123.
    [10]WANG Feifan, LI Wenya, CHEN Liang, LI Jinglong. Numerical study on influence of axial pressure on inertia friction welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2012, (2): 41-44.
  • Cited by

    Periodical cited type(4)

    1. 徐桂芳,张杰,宋瑞智,王嘉. 人工时效对喷射成形2195-T4搅拌摩擦焊接头组织与性能的影响. 材料热处理学报. 2023(05): 217-226 .
    2. 曹高威,王进,孙守義. 转速对6061铝合金搅拌摩擦搭接焊接头组织和力学性能的影响. 精密成形工程. 2023(09): 28-36 .
    3. 刘刚,王礼凡,朱磊,张玺,解芳,彭银利. 6061铝合金搅拌摩擦焊接头组织及性能. 焊接. 2022(01): 21-25 .
    4. 刘刚,王礼凡,朱磊,张玺,解芳,彭银利. 6061铝合金搅拌摩擦焊接头组织及性能. 机械制造文摘(焊接分册). 2022(04): 36-40 .

    Other cited types(5)

Catalog

    Article views (408) PDF downloads (32) Cited by(9)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return