Citation: | LI Xinlei, ZHANG Guangjun. Research on space equidistant path planning algorithm of complex curved surface for arc additive manufacturing[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(7): 14-20. DOI: 10.12073/j.hjxb.20201126001 |
杨壮, 王天琪, 李亮玉, 等. 厚壁结构件电弧增材制造成形方法及工艺[J]. 焊接学报, 2019, 40(10): 100 − 105.
Yang Zhuang, Wang Tianqi, Li Liangyu, et al. Forming method and technology of arc additive manufacturing for thick wall structural parts[J]. Transactions of the China Welding Institution, 2019, 40(10): 100 − 105.
|
Li Y, Sun Y, Han Q, et al. Enhanced beads overlapping model for wire and arc additive manufacturing of multi-layer multi-bead metallic parts[J]. Journal of Materials Processing Technology, 2018, 252: 838 − 848. doi: 10.1016/j.jmatprotec.2017.10.017
|
柏久阳, 王计辉, 林三宝, 等. 铝合金电弧增材制造焊道宽度尺寸预测[J]. 焊接学报, 2015, 36(9): 87 − 90.
Bai Jiuyang, Wang Jihui, Lin Sanbao, et al. Width prediction of aluminium alloy weld additively manu-factured by TIG arc[J]. Transactions of the China Welding Institution, 2015, 36(9): 87 − 90.
|
Chakraborty D, Reddy B A, Choudhury A R. Extruder path generation for curved layer fused deposition modeling[J]. Computer-Aided Design, 2008, 40(2): 235 − 243. doi: 10.1016/j.cad.2007.10.014
|
牛其华. 基于体素的电弧增材制造曲面分层及路径规划方法研究[D]. 武汉: 华中科技大学, 2019.
Niu Qihua. Research of curved layer and path planning method based on voxel for wire arc additive manyfacturing[D]. Wuhan: Huazhong University of Science & Technology, 2019.
|
舒莲卿. 网格曲面求交及其交线的等距线构造[D]. 杭州: 杭州电子科技大学, 2009.
Shu Lianqing. Intersection of mesh surfaces and construction offset line on surfaces[D]. Hangzhou: Hangzhou Dianzi University, 2009.
|
刘斌, 闫伟国, 黄常标, 等. 三角网格曲面上的等距曲线构造[J]. 计算机集成制造系统, 2015, 21(2): 401 − 409.
Liu Bin, Yan Weiguo, Huang Changbiao, et al. Computing offsets of curves on triangular mesh[J]. Institution Computer Integrated Manufacturing System, 2015, 21(2): 401 − 409.
|
[1] | CHEN Xiukai, CAO Yunfei, BIAN Hong, SONG Xiaoguo, JIANG Nan, LI Ming. Effect of brazing temperature on interfacial microstructure and mechanical property of 316L/AuSi/NiTi joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(7): 9-15. DOI: 10.12073/j.hjxb.20220831001 |
[2] | ZHU Jinyang, XU Lining, SHI Yunguang, CHANG Wei, LU Minxu. Microstructure and mechanical properties of welded joints of a novel Cr3MoNb pipeline steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2014, 35(1): 67-71. |
[3] | WANG Zhanying, LI Huan, LIANG Jianming, LIN Chundong. Mechanical property analysis of welding joint made by pulsed submerged arc welding technology[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2009, (2): 107-110. |
[4] | ZHU Hai, ZHENG Haiyang, GUO Yarding. Effects of heat treatment technology on mechanical properties of friction welding drill rod[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (12): 93-96. |
[5] | WANG Hui, HE Deping, CHU Xuming, HE Siyuan. Interface structure of N2-shielded furnace brazing of Al foam and its mechanical properties[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (10): 1-4, 8. |
[6] | HAO Guo-jian, LIN Zhi, LIN Jun-pin, WANG Yan-li, CHEN Guo-liang. Analysis of microstructure and mechanical properties of Be/Al weld[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2006, (5): 89-92. |
[7] | YAO Wei, GONG Shui-li, CHEN Li. Microstructure and mechanical properties of laser welded joint of titanium alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2006, (2): 69-72,76. |
[8] | YAN Keng, CAO Liang, CHEN Hua-bin. Effect of tool tilt angle on formation and mechanical property of FSW[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2005, (12): 35-38. |
[9] | Sun Daqian, Zhou Zhenfeng, Ren Zhenan. Microstructure and Mechanical Properties of Austempered Ductile Iron Welds[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1995, (4): 202-207. |
[10] | Shi Yaowu, Zhou Ningning, Zhang Xinping, Tang Wei, Lei Yongping. Microshear test and its evaluation to mechanical properties of welded joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1994, (4): 235-240. |