Advanced Search
WANG Shang, MA Jingxuan, YANG Dongsheng, XU Jiahui, HANG Chunjin, TIAN Yanhong. Research on the RF performance simulation of ultra-fine wire bonding of RF devices[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(10): 1-7. DOI: 10.12073/j.hjxb.20201125001
Citation: WANG Shang, MA Jingxuan, YANG Dongsheng, XU Jiahui, HANG Chunjin, TIAN Yanhong. Research on the RF performance simulation of ultra-fine wire bonding of RF devices[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(10): 1-7. DOI: 10.12073/j.hjxb.20201125001

Research on the RF performance simulation of ultra-fine wire bonding of RF devices

  • With the continuous improvement of radar performance indicators and the continuous compression of the volume, the T/R (transmitter and receiver) component as one of its key components is also continuously developing in the direction of miniaturization and high density. Ultra-high-density wire bonding technology is adopted to realize high-density RF device packaging form. However, it will cause the reliability of bonding solder joints to decrease, and the circuit RF performance is poor. Aiming at the problem of the degradation of radio frequency performance caused by the small bond size, this paper used HFSS software to explore the influence of the change in the gold strip's size on the circuit radio frequency performance. And ANSYS Q3D and ADS software were used to match the impedance of the ultra-fine wire bonding circuit. The results show that for gold wire and gold ribbon, inserting the microstrip double-stub matching structure can significantly improve the radio frequency performance of the circuit. For type 1 structure, the transmission power of S21 and S12 can reach −0.049 dB. For type 2 Structure, the transmission power of S21 and S12 can reach −7.245 × 10−5 dB, indicating that the signal transmission under the type 2 structure is almost lossless. This result can lay a theoretical foundation for the application of ultra-fine wire bonding technology in radio frequency circuits.
  • loading

Catalog

    Turn off MathJax
    Article Contents

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return