Advanced Search
QIAO Jisen, YANG Yuanzhuang, GAO ZhenYun, LU Wanquan, WANG Lei. Research on arc morphology and droplet transfer mode of high-strength steel T-joint of flux bands constricting arc welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(4): 28-35. DOI: 10.12073/j.hjxb.20201117002
Citation: QIAO Jisen, YANG Yuanzhuang, GAO ZhenYun, LU Wanquan, WANG Lei. Research on arc morphology and droplet transfer mode of high-strength steel T-joint of flux bands constricting arc welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(4): 28-35. DOI: 10.12073/j.hjxb.20201117002

Research on arc morphology and droplet transfer mode of high-strength steel T-joint of flux bands constricting arc welding

More Information
  • Received Date: November 16, 2020
  • Available Online: August 04, 2021
  • In order to solve the welding problem of high strength steel sandwich plate, a welding method of flux bands constricting arc welding (FBCA) was proposed, and a well-formed T-joint is obtained. Firstly, the melting state of flux bands at high temperature is measured and analyzed. Secondly, The high-speed camera system was built to collect the arc and droplet images in the welding process, analyze the change of arc morphology and droplet transfer mode. Finally, measure the size of the welded T-joint and study the forming rule. The results show that under different parameters, FBCA welding has short circuiting transfer, arc bridge transfer, globular transfer, fine transfer and meso-spray transfer. The flux bands has small particle, large particle, liquid bridge and arc bridge coexistence. When the flux bands is in the form of arc bridge or liquid bridge, and the arc bridge transfer, the arc is compressed and burned stably, and the weld forming is best.
  • Queheullalt D T, Murty Y, Wadley H N G. Mechanical properties of an extruded pyramidal lattice truss sandwich structure[J]. Scripta Materialia, 2008, 58(1): 76 − 79. doi: 10.1016/j.scriptamat.2007.08.041
    Knox E M, Cowling M J, Winkle I E. Adhesively bonded steel corrugated core sandwich construction for marine application[J]. Marine Structures, 1998, 11(4): 182 − 204.
    Wang L, Qiao J, Zhu L, et al. Effects of flux bands on arc stability in flux bands constricting arc welding[J]. Journal of Manufacturing Processes, 2020, 54: 190 − 200. doi: 10.1016/j.jmapro.2020.03.012
    陈振文, 乔及森, 王磊, 等. 焊剂片约束电弧焊三明治板T形接头的组织与性能[J]. 焊接, 2019(9): 5 − 9.

    Chen Zhenwen, Qiao Jisen, Wang Lei, et al. Microstructure and properties of T-joint of sandwich board with flux-bound arc welding[J]. Welding & Joining, 2019(9): 5 − 9.
    Gustavo, Simes, Teixeira, et al. GMA welding metal transfer mode study by high-speed imaging and electrical signal acquisition[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2019, 41(8): 1 − 12.
    于英飞, 朱志明, 孙博文, 等. 焊接电弧图像的边缘检测及其批处理算法[J]. 焊接学报, 2018, 39(11): 17 − 21. doi: 10.12073/j.hjxb.2018390265

    Yu Yingfei, Zhu Zhiming, Sun Bowen, et al. Edges detection and batch algorithm for welding arc images[J]. Transaction of the China Welding Institution, 2018, 39(11): 17 − 21. doi: 10.12073/j.hjxb.2018390265
    刘占民, 李明利, 薛龙. 熔化极电弧焊熔滴过渡过程的高速摄像[J]. 激光与红外, 2006, 36(2): 131 − 134. doi: 10.3969/j.issn.1001-5078.2006.02.016

    Liu Zhanmin, Li Mingli, Xue Long. Slow-motion video recording for melted drop transition procedures of arc welding with consumable electrode[J]. Laser and Infrared, 2006, 36(2): 131 − 134. doi: 10.3969/j.issn.1001-5078.2006.02.016
    冯永伟, 刘双宇, 刘凤德, 等. 激光-MAG电弧复合焊接过程中的电弧形态与熔滴过渡特性[J]. 应用激光, 2015, 35(6): 672 − 676.

    Feng Yongwei, Liu Shuangyu, Liu Fengde, et al. Arc shape and transfer characteristics of droplets in laser-MAG arc hybrid welding[J]. Applied Laser, 2015, 35(6): 672 − 676.
    顾玉芬, 何冠宇, 石玗, 等. 窄间隙约束下熔化极气体保护焊的电弧形态和熔滴过渡分析[J]. 上海交通大学学报, 2016, 50(10): 1526 − 1529.

    Gu Yufen, He Guanyu, Shi Yu, et al. Detection and analysis of arc shape and droplet transfer behavior of narrow gap GMAW[J]. Journal of Shanghai Jiaotong University, 2016, 50(10): 1526 − 1529.
    郭波, 石永华, 易耀勇. 基于电弧形态的熔滴过渡形式识别[J]. 焊接学报, 2017, 38(11): 27 − 31. doi: 10.12073/j.hjxb.20160121002

    Guo Bo, Shi Yonghua, Yi Yaoyong, et al. Metal transfer modes identification based on arc shape[J]. Transaction of the China Welding Institution, 2017, 38(11): 27 − 31. doi: 10.12073/j.hjxb.20160121002
  • Related Articles

    [1]FU Kuijun, ZHAO Jingwei, GAO Mingze, LENG Xuesong, YAN Jiuchun. Grain growth and phase transformation in the welded joint HAZ of TiNbV microalloyed steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(3): 17-22. DOI: 10.12073/j.hjxb.20190715004
    [2]ZHENG Huaibei, YE Xiaoning, ZHANG Xuefeng, JIANG Laizhu, LIU Zhenyu, WANG Guodong. Microstructure transformation,grain growth and precipitated phase of 12%Cr ferritic stainless steel in coarse grain zone[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2011, (6): 37-40.
    [3]ZHANG Genyuan, XU Maili, TIAN Songya, Wen Fang. Genetic algorithm of grain growth in heat-affected zone of 45 steel AC flash butt welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2009, (6): 79-82.
    [4]LI Yubin, MENG Daqiao, LIU Kezhao, XIE Zhiqiang. Simulation of the microstructure evolution of welding-grain growth in heat affected zone[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2009, (1): 25-28,32.
    [5]WU Wei, GAO Hongming, CHENG Guangfu, WU Lin. Grain growth in heat affected zone of fine grained titanium alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (10): 57-60, 64.
    [6]ZHANG Guifeng, MIAO Huixia, ZHANG Jianxun, PEI Yi, WANG Jian, ZHANG Yantao. Effects of immediate water cooling and normalization after welding on microstructure and hardness of heat affected zone of ultra-fine grain steels welded joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2007, (12): 47-50.
    [7]WEN Jun qin, LIU Xin tian, MO Chun li, ZHANG Shi xing. Microstructure simulation of grain growth in heat affected zone[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2003, (3): 48-51.
    [8]QU Zhao-xia, TIAN Zhi-ling, DU Ze-yu. The HAZ Grain Growth Diagram of the New Generation Steel with Yield Strength 400 Mpa[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2002, (3): 29-31.
    [9]QU Zhao-xia, TIAN Zhi-ling, DU Ze-yu, HE Chang-hong, ZHANG Xiao-mu, YANG Bai. Grain Growth in HAZ of Ultra-fine Grain Steels[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2000, (4): 9-12.
    [10]SUN Jun-sheng, WU Chuan-song, Li Ya-jiang. Welding Heat Transfer of GMAW and Its Effects on Austenite Grain Growth Process in HAZ[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2000, (3): 27-31.

Catalog

    Article views (336) PDF downloads (16) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return