Advanced Search
LUO Chuanguang, LI Huan, XU Guangpei, WU Sheng, WEN Yuanhua, YANG Lijun. Microstructure and properties of GTAW welded joint of 2195 Al-Li alloy in different forming states[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(1): 8-15. DOI: 10.12073/j.hjxb.20200818001
Citation: LUO Chuanguang, LI Huan, XU Guangpei, WU Sheng, WEN Yuanhua, YANG Lijun. Microstructure and properties of GTAW welded joint of 2195 Al-Li alloy in different forming states[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(1): 8-15. DOI: 10.12073/j.hjxb.20200818001

Microstructure and properties of GTAW welded joint of 2195 Al-Li alloy in different forming states

More Information
  • Received Date: August 17, 2020
  • Available Online: February 23, 2021
  • GTAW butt welding was carried out using spray-deposited 2195 aluminum-lithium alloy spinning and forging materials. The tensile strength and Vickers hardness of the joint were measured, and the metallographic microstructure and fracture morphology of the joint were observed. The EBSD characterization and statistical analysis of micro characteristic quantity were carried out for each area of the joint. The correlation between microstructure and mechanical properties of the joint was discussed. The results show that the spinning and forging materials have good GTAW processability, the tensile strength of the joint reaches 71% and 68% of the respective base materials, the elongation reaches 7.3%, and the tensile fracture shows ductile fracture characteristics. The proportion of low angle grain boundary of the metal in the joint weld zone is relatively low. The proportion of low angle grain boundary close to the spin side is 6.4%, and the proportion of low angle grain boundary close to the forging side is 7.8%. The heat affected zone between the spin side and the forging side and the fusion zone tend to similar microstructure. The average grain size of the base material, heat affected zone, fusion zone and weld metal are in order of 10, 10 − 15, 15 − 23, 20 − 25 μm, with the better “continuity” of the structure. The fine grain size and uniform composition of the base material are maintained during the welding process, which to a certain extent shows the application advantages of spray-deposited aluminum-lithium alloy materials.
  • Gupta R, Nayan N, Nagasireesha G, et al. Development and characterization of Al-Li alloys[J]. Materials Science and Engineering: A, 2006, 420(1): 228 − 234.
    Kostrivas A, Lippold J C. Weldability of Li-bearing aluminum alloys[J]. International Materials Reviews, 1999, 44(6): 217 − 237. doi: 10.1179/095066099101528289
    Fielding Paul S, Gorge J. Aluminum-lithium for aerospace[J]. Advanced Materials and Processes, 1996, 150(10): 2 − 24.
    Jiang Xunyan, Cheng Donghai, Chen Yiping, et al. The superplastic deformation of electron beam welded aluminum lithium alloy[J]. China Welding, 2018, 27(1): 41 − 45.
    李杨. 分级时效工艺对2195铝锂合金拉伸性能的影响[D]. 哈尔滨: 哈尔滨工业大学, 2009.

    Li Yang. The effect of graded aging process on the tensile properties of 2195 Al-Li alloy[D]. Harbin: Harbin Institute of Technology, 2009.
    马云龙, 杨子奇, 李劲风. 2195铝锂合金摩擦搅拌焊接头组织与腐蚀行为[J]. 焊接学报, 2019, 40(10): 142 − 147.

    Ma Yunlong, Yang Ziqi, Li Jinfeng. Microstructure and corrosion behavior of friction stir welded joints of 2195 Al-Li alloy[J]. Transactions of the China Welding Institution, 2019, 40(10): 142 − 147.
    赵云鹏, 曾福明, 周志勇, 等. 新型铝合金的发展及其在密封舱结构上的工程应用[J]. 载人航天, 2016, 22(3): 302 − 307. doi: 10.3969/j.issn.1674-5825.2016.03.005

    Zhao Yunpeng, Zeng Fuming, Zhou Zhiyong, et al. Development of new aluminum alloy and its engineering application in sealed cabin structure[J]. Manned Spaceflight, 2016, 22(3): 302 − 307. doi: 10.3969/j.issn.1674-5825.2016.03.005
    陆正萍. 喷射成形超高强度铝合金搅拌摩擦焊接头组织性能研究[D]. 镇江: 江苏科技大学, 2015.

    Lu Zhengping. Research on microstructure and properties of spray formed ultra-high strength aluminum alloy friction stir welded joints[D]. Zhenjiang: Jiangsu University of Science and Technology, 2015.
    罗传光, 李桓, 马飞, 等. 喷射成形2195铝锂合金封头旋压及焊接试验研究[J]. 天津大学学报, 2020, 53(8): 803 − 808.

    Luo Chuanguang, Li Huan, Ma Fei, et al. Spinning and welding test investigation of shell cover of spray-formed 2195 Al-Li alloy[J]. Journal of Tianjin University, 2020, 53(8): 803 − 808.
    Brooks R G, Moore C, Leatham A G, et al. The Osprey process[J]. Powder Metallurgy, 1977, 20(2): 100 − 102. doi: 10.1179/pom.1977.20.2.100
    Mathur P, Apelian D, Lawley A. Analysis of the spray deposition process[J]. Acta Metallurgica, 1989, 37(2): 429 − 443. doi: 10.1016/0001-6160(89)90227-7
    于福胜. 运载火箭贮箱材料2195铝锂合金焊接性研究[D]. 天津: 天津大学, 2017.

    Yu Fusheng. Study on weldability of 2195 Al-Li Alloy for carrier rocket tank[D]. Tianjin: Tianjin University, 2017.
    Zhang Yuhui, Li Huan, Luo Chuanguang, et al. Effects of filler wires on the microstructure and mechanical properties of 2195-T6 Al-Li alloy spray formed by TIG welding[J]. Materials, 2019, 12(21): 3559. doi: 10.3390/ma12213559
    Zhai T, Wilkinson A J, Martin J W. A crystallographic mechanism for fatigue crack propagation through grain boundaries[J]. Acta Materialia, 2000, 48(20): 4917 − 4927.
    Jin Y J, Lu H, Yu C, et al. Study on grain boundary character and strain distribution of intergranular cracking in the CGHAZ of T23 steel[J]. Materials Characterization, 2013, 84(10): 216 − 224.
    Zhang Z F, Wang Z G. Comparison of fatigue cracking possibility along large- and low-angle grain boundaries[J]. Materials Science & Engineering A, 2000, 284(1): 285 − 291.
    Kamaya M, Fonseca J Q D, Li L M, et al. Local plastic strain measurement by EBSD[J]. Applied Mechanics and Materials, 2007, 7: 173 − 179.
    彭大暑. 金属塑性加工原理[M]. 长沙: 中南大学出版社, 2004.

    Peng Dashu. Principles of metal plastic processing[M]. Changsha: Central South University Press, 2004.
  • Cited by

    Periodical cited type(1)

    1. 李劲风,李昊然,王正安. 铝锂合金组织-性能相关性及新型铝锂合金设计. 中国材料进展. 2022(10): 796-807 .

    Other cited types(3)

Catalog

    Article views (528) PDF downloads (38) Cited by(4)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return