Citation: | SONG Ming, MA Shuai, DU Chuansheng, WANG Bingying, JIANG Wenchun. Study on creep damage evolution of braze sealant of solid oxide fuel cell by small punch test[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(12): 55-60. DOI: 10.12073/j.hjxb.20200710002 |
蒋文春, 张玉财, 关学伟. 平板式SOFC钎焊自适应密封热应力与变形分析[J]. 焊接学报, 2012, 33(11): 55 − 58.
Jiang Wenchun, Zhang Yucai, Guan Xuewei. Thermal stress and deformation in bonded compliant seal design for planar SOFC[J]. Transactions of the China Welding Institution, 2012, 33(11): 55 − 58.
|
Stambouli A B, Traversa E. Solid oxide fuel cells (SOFCs): a review of an environmentally clean and efficient source of energy[J]. Renewable & Sustainable Energy Reviews, 2002, 6(5): 433 − 455.
|
李森. 中低温固体氧化物燃料电池阳极功能层及电解质薄膜制备[D]. 大连: 大连理工大学, 2019.
Li Sen. Fabrication of anode functional layer and thin film electrolyte for low-intermediate temperature solid oxide fuel cells[D]. Dalian: Dalian University of Technology, 2019.
|
陈家丽. 低温型固体氧化物燃料电池电解质的研究进展[J]. 山东化工, 2019, 48(17): 78 − 79. doi: 10.3969/j.issn.1008-021X.2019.17.033
Chen Jiali. Research progress of electrolytes for low temperature solid oxide fuel cells[J]. Shandong Chemical Industry, 2019, 48(17): 78 − 79. doi: 10.3969/j.issn.1008-021X.2019.17.033
|
刘泳良. 中温固体氧化物燃料电池密封材料的设计与性能研究[D]. 上海: 上海交通大学, 2013.
Liu Yongliang. Design and performance of sealing materials for IT-SOFC[D]. Shanghai: Shanghai Jiao Tong University, 2013.
|
陈建钧, 史进, 涂善东, 等. BNi-2/0Cr18Ni9钎焊接头高温蠕变行为的试验研究及数值模拟[J]. 焊接学报, 2006, 27(3): 43 − 47.
Chen Jianjun, Shi Jin, Tu Shandong, et al. Experimental research and numerical simulation on creep behavior of BNi-2/0Cr18Ni9 brazed joint at high temperature[J]. Transactions of the China Welding Institution, 2006, 27(3): 43 − 47.
|
宋明, 李旭阳, 曹宇光, 等. 基于BP神经网络与小冲杆试验确定在役管道钢弹塑性性能方法研究[J]. 力学学报, 2020, 52(1): 82 − 92. doi: 10.6052/0459-1879-19-297
Song Ming, Li Xuyang, Cao Yuguang, et al. Determination of elastoplastic properties of in-service pipeline steel based on BP neural network and small punch test[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(1): 82 − 92. doi: 10.6052/0459-1879-19-297
|
盛晓茜, 洪军, 朱林波. 小冲杆蠕变测试技术的研究综述[J]. 压力容器, 2018, 35(10): 44 − 58. doi: 10.3969/j.issn.1001-4837.2018.10.008
Sheng Xiaoxi, Hong Jun, Zhu Linbo. Review of research on small punch creep test[J]. Pressure Vessel Technology, 2018, 35(10): 44 − 58. doi: 10.3969/j.issn.1001-4837.2018.10.008
|
Kim J H, Ro U, Lee H, et al. A direct assessment of creep life based on small punch creep test[J]. Theoretical and Applied Fracture Mechanics, 2019, 104: 102346.
|
Song K, Zhao L, Xu LY, et al. Experimental and numerical analysis of creep and damage behavior of P92 steel by small punch tests[J]. Theoretical and Applied Fracture Mechanics, 2019, 100: 181 − 190.
|
Li Y Z, Ŝturm R. Determination of creep properties from small punch test[C]//ASME Pressure Vessels and Piping Conference. 2008: 739 − 750.
|
张玉财. 多轴应力状态下钎焊接头蠕变损伤与裂纹扩展研究[D]. 上海: 华东理工大学, 2016.
Zhang Yucai. Creep damage and crack growth analysis of the brazed joint under multi-axial stress state[D]. Shanghai: East China University of Science and Technology, 2016.
|
Wen J F, Tu S T, Gao X L, et al. Simulations of creep crack growth in 316 stainless steel using a novel creep-damage model[J]. Engineering Fracture Mechanics, 2013, 98(1): 169 − 184.
|
温建锋. 基于应变的损伤力学模型及其在蠕变裂纹扩展数值模拟中的应用[D]. 上海: 华东理工大学, 2014.
Wen Jianfeng. Strain-based damage mechanics model and its application to numerical simulation of creep crack growth[D]. Shanghai: East China University of Science and Technology, 2014.
|
尤英俊. 小冲孔试样高温蠕变损伤的有限元模拟[D]. 南京: 南京工业大学, 2004.
You Yingjun. Finite element analysis of creep damage of in small punch test specimens at elevated temperature[D]. Nanjing: Nanjing Tech University, 2004.
|
Saanouni K, Chaboche J L, Bathias C. On the creep crack growth prediction by a local approach[J]. Engineering Fracture Mechanics, 1986, 25(5): 677 − 691.
|
[1] | ZONG Xuemei, WU Bin, ZHANG Liping, LI Wen. Numerical simulation of temperature field in weaving welding based on ladder model[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2014, 35(11): 9-12. |
[2] | ZHOU Guangtao, GUO Guanglei, FANG Hongyuan. Numerical simulation of temperature field during laser-induced welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2014, 35(7): 22-26. |
[3] | ZHANG Lei, QIN Guoliang, ZHANG Chunbo, ZHAO Yushan, ZHOU Jun. Numerical simulation of radial friction welding temperature field of steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2013, (11): 32-36. |
[4] | ZHANG Xiaoqi, XU Guocheng, WANG Chunsheng, WEN Jing. Numerical simulation of the temperature field during resistance spot welding with rectangular electrode[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2009, (4): 101-104. |
[5] | XIONG Zhijun, LI Yongqiang, ZHAO Xihua, LI Min, ZHANG Weihua. Numerical simulation of temperature field in deep penetration laser welding under hot and press condition[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2007, (8): 41-44. |
[6] | LI Hong-ke, SHI Qing-yu, ZHAO Hai-yan, LI Ting. Auto-adapting heat source model for numerical analysis of friction stir welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2006, (11): 81-85. |
[7] | JIANG You-qing, GU Lei, LIU Jian-hua. Temperature field numerical simulation of YAG-MIG hybrid welding process for thick aluminum alloy plate[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2006, (6): 104-107. |
[8] | WANG Xi-chang, WU Bing, ZUO Cong-jin, LIU Fang-jun. New heat source model for numerical simulation of electron beam welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2005, (12): 81-84. |
[9] | MENG Qing-guo, FANG Hong-yuan, XU Wen-li, JI Shu-de. Numerical simulation of muli-pass welding temperature field taking account of metal filling[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2004, (5): 53-55,59. |
[10] | Zou Zengda, Wang Xinhong, Qu Shiyao. Numerical Simulation of Temperature Field for Weld-repaired Zone of White Cast Iron[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1999, (1): 24-29. |