Advanced Search
DENG Chengmin, CHENG Donghai, ZHANG Hua, FANG Yuanfang, RONG Yi, WANG Long. Effect of microstructure and mechanical properties on Al-Cu welding-brazing joint assisted by longitudinal DC magnetic field[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(10): 23-27. DOI: 10.12073/j.hjxb.20200602003
Citation: DENG Chengmin, CHENG Donghai, ZHANG Hua, FANG Yuanfang, RONG Yi, WANG Long. Effect of microstructure and mechanical properties on Al-Cu welding-brazing joint assisted by longitudinal DC magnetic field[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(10): 23-27. DOI: 10.12073/j.hjxb.20200602003

Effect of microstructure and mechanical properties on Al-Cu welding-brazing joint assisted by longitudinal DC magnetic field

More Information
  • Received Date: June 01, 2020
  • Available Online: October 20, 2020
  • TIG welding was used for butt welding of aluminum copper dissimilar materials. By adding Zn-2%Al flux cored wire to control the composition of the weld, and by adding longitudinal DC magnetic field to control the interface structure, the mechanical properties of the joint were improved. The results show that, compared with no magnetic field, the shape, thickness and compound types of IMC layer on the Cu side change under the action of longitudinal DC magnetic field: the average thickness of IMC layer decreases from 32.8 μm to 14.6 μm; the shape changes from straight to curved, which plays a role of “mechanical occlusion”; the appearance of ternary compound Al4.2Cu3.2Zn0.7 in IMC layer on Cu side inhibits the growth of hard and brittle AlCu and Al2Cu compounds, and improves the joint performance. After adding DC magnetic field, the joint tensile strength is higher than that without magnetic field, and the joint tensile strength increases first and then decreases with the increase of magnetic field strength. When welding current I = 95 A, welding voltage U = 16 V, welding speed v = 140 mm/min and magnetic field strength B = 10 mT, the tensile strength of the joint is the highest, reaching 110.8 MPa, which is about 24% higher than that without magnetic field.
  • Zhou L, Li Z Y, Zhao H Y, et al. Microstructure and mechanical properties of TIG brazed joints of aluminium/brass dissimilar metals[J]. Chinese Journal of Nonferrous Metals, 2015, 25(9): 2389 − 2395.
    Choudhury T, Ghorai A, Medhi T, et al. Study of microstructure and mechanical properties in friction stir welded aluminum copper lap joint[J]. Materials Today: Proceedings, 2020. https://doi.org/10.1016/j.matpr.2020.03.238.
    Li G H, Zhou L, Shu F Y, et al. Statistical and metallurgical analysis of dissimilar friction stir spot welded aluminum/copper metals[J]. Journal of Materials Engineering and Performance, 2020, 29(3): 1830 − 1840. doi: 10.1007/s11665-020-04729-6
    Anbukkarasi R, Kailas S V. Influences of shape of the new interfaces and morphology of the intermetallics on mechanical properties of aluminum AA2024-pure copper joints by friction stir welding[J]. The International Journal of Advanced Manufacturing Technology, 2020, 106(11): 5071 − 5083.
    刘彦峰, 周春生, 王献辉, 等. T2紫铜/2A12硬铝双金属复合材料的扩散连接[J]. 材料热处理学报, 2017, 38(2): 15 − 20.

    Liu Yanfeng, Zhou Chunsheng, Wang Xianhui, et al. Preparation of T2 copper/2A12 duralumin bimetallic composites by diffusion bonding[J]. Transactions of Materials and Heat Treatment, 2017, 38(2): 15 − 20.
    Mathivanan K, Plapper P. Laser welding of dissimilar copper and aluminum sheets by shaping the laser pulses[J]. Procedia Manufacturing, 2019, 36: 154 − 162. doi: 10.1016/j.promfg.2019.08.021
    Shankar S, Chattopadhyaya S. Friction stir welding of commercially pure copper and 1050 aluminum alloys[J]. Materials Today: Proceedings, 2020, 25: 664 − 667. doi: 10.1016/j.matpr.2019.07.719
    周利, 李志勇, 赵洪运, 等. 铝/黄铜异种金属TIG填丝熔钎焊工艺[J]. 焊接学报, 2016, 37(12): 17 − 20.

    Zhou Li, Li Zhiyong, Zhao Hongyun, et al. TIG welding-brazing for Al/Cu dissimilar metals using filler material[J]. Transactions of the China Welding Institution, 2016, 37(12): 17 − 20.
    Zhang Y, Li Y, Luo Z, et al. Feasibility study of dissimilar joining of aluminum alloy 5052 to pure copper via thermo-compensated resistance spot welding[J]. Materials & Design, 2016, 106: 235 − 246.
    彭迟, 程东海, 陈益平, 等. 铝/铜异种材料等离子弧熔钎焊搭接接头工艺分析[J]. 焊接学报, 2016, 37(4): 65 − 68.

    Peng Chi, Cheng Donghai, Chen Yiping, et al. Analysis process of plasma arc melting brazing lap joint of dissimilar materials of aluminum and copper[J]. Transactions of the China Welding Institution, 2016, 37(4): 65 − 68.
    Yang C, Jiang S Y, Bi H B. Numerical simulation study of metal transfer in MIG welding with magnetic control[J]. Applied Mechanics and Materials, 2014, 532: 545 − 548. doi: 10.4028/www.scientific.net/AMM.532.545
    Chen S J, Liu C H, Yu Y, et al. Influence of preset pulsed magnetic field on process stability of short circuiting transfer in gas metal arc welding[J]. Advanced Materials Research, 2011, 339: 440 − 443. doi: 10.4028/www.scientific.net/AMR.339.440
    Sun Q, Li J, Liu Y, et al. Arc characteristics and droplet transfer process in CMT welding with a magnetic field[J]. Journal of Manufacturing Processes, 2018, 32: 48 − 56. doi: 10.1016/j.jmapro.2018.01.017
    Chang Y L, Liu X L, Lu L, et al. Impacts of external longitudinal magnetic field on arc plasma and droplet during short-circuit GMAW[J]. International Journal of Advanced Manufacturing Technology, 2014, 70(9−12): 1543 − 1553. doi: 10.1007/s00170-013-5403-1
    高亚楠. 纵向磁场作用下高速TIG焊接电弧行为及焊缝成形机理研究[D]. 沈阳: 沈阳工业大学, 2012.

    Gao Yanan. Research on high-speed TIG welding arc behavior and weld formation mechanism under longitudinal magnetic fields [D]. Shenyang: Shenyang University of Technology, 2012.
    殷咸青, 罗键, 李海刚. 纵向磁场参数对LD10CS铝合金TIG焊焊缝组织的影响[J]. 西安交通大学学报, 1999, 7: 73 − 76. doi: 10.3321/j.issn:0253-987X.1999.12.019

    Yin Xianqing, Luo Jian, Li Haigang. Optimization of magnetic parameters for grain structure refinement of LD10CS aluminum alloy weldment[J]. Journal of Xi'an Jiaotong University, 1999, 7: 73 − 76. doi: 10.3321/j.issn:0253-987X.1999.12.019
    国旭明, 杨成刚. 磁搅拌对铝铜合金MIG焊缝形状、组织及性能影响[J]. 航空材料学报, 2007, 2: 18 − 21. doi: 10.3969/j.issn.1005-5053.2007.02.004

    Guo Xuming, Yang Chenggang. Effect of electromagneticstirring on the shape structure and mechanical properties of Al-Cu alloy MIG weld[J]. Journal of Aeronautical Materials, 2007, 2: 18 − 21. doi: 10.3969/j.issn.1005-5053.2007.02.004
    Hicken G K, Jackson C E. Effects of applied magnetic fields on welding arcs[J]. Welding Journal, 1996, 45(8): 513 − 518.
    Abralov M A, Abdurakhmanov R U, Iuldashev A T. The effects of electro-magnetic action on the properties and structure of welded joints in the 01420 alloys[J]. Automatic Welding, 1977, 30(5): 52 − 55.
    Chen R, Wang C, Jiang P, et al. Effect of axial magnetic field in the laser beam welding of stainless steel to aluminum alloy[J]. Materials and Design, 2016, 109: 146 − 152. doi: 10.1016/j.matdes.2016.07.064
  • Related Articles

    [1]YUAN Mingxin, DAI Xianling, LIU Chao, SUN Hongwei, WANG Lei. Feature parameters extraction of ship welds based on spatial position and contour distance[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(1): 84-92. DOI: 10.12073/j.hjxb.20211208002
    [2]HE Jianping, TAO Xuyang, JI Yongfeng. Dynamic distribution characteristic of temperature field and weld morphology control in pulsed microplasma arc welding ultra-thin sheets[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(9): 67-73. DOI: 10.12073/j.hjxb.20200423001
    [3]WANG Angyang, HE Jianping, WANG Xiaoxia, LINYANG Shenlan. Distribution characteristics and parameters effects of MPLW arc[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2017, 38(8): 77-81. DOI: 10.12073/j.hjxb.20151007002
    [4]JIANG Qixiang, ZOU Yirong, DU Dong. Spatial distribution measurement of gas tungsten arc current density based on image analysis[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(8): 101-104.
    [5]CHEN Haiyong, DU Xiaolin, DONG Yan. Tiny visual feature extraction of random changing weld[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(5): 97-101.
    [6]SHI Duanhu, GANG Tie, YANG Feng. Automatic corresponding criterion of bulk defects in I style weldments[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2012, (5): 53-56.
    [7]SHI Duanhu, GANG Tie, HUANG Chuanhui, YANG Genxi. Automated extraction of spatial locating data for bulk defects in double T joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2010, (4): 69-72.
    [8]SHI Duan-hu, GANG Tie, YUAN Yuan. Spatial distribution features of weld defects in complex structure[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2005, (11): 71-74.
    [9]SHI Yu-xiang, QIAO Ya-xia, Masahiro TOYOSADA. Distribution feature of welding aerosol particle size[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2003, (1): 31-34.
    [10]Han Guoming, Li Junyue, Wu Zhao, Liu Gang. Distribution Feature of Welding Arc Ultraviolet Spestrum[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1999, (4): 213-218.
  • Cited by

    Periodical cited type(12)

    1. 汪孟杰,安康,祝贺,陈瑶,王李冬. 基于机器视觉技术的工业焊板焊缝位置检测系统. 物联网技术. 2025(01): 9-14+20 .
    2. 赵秋,唐琨,李英豪,林铮哲,陈鹏. 钢桥面板对接焊缝表面多缺陷疲劳效应研究. 铁道标准设计. 2024(03): 133-140+162 .
    3. 强伟,王克鸿,彭勇,袁银辉,路永新,董会. V形耦合双热源自熔焊接热-力分布特征. 稀有金属. 2024(04): 529-538 .
    4. 薛辰宇,石端虎,甄紫,孙远. 对接接头焊件射线检测图像焊缝区的自适应提取. 焊接技术. 2024(08): 106-110 .
    5. 陈晓明,王丽,马良,周峰,袁山山. 钢筋工程焊缝质量检测技术研究进展. 北京理工大学学报. 2024(12): 1215-1224 .
    6. 石端虎,吴三孩,历长云,赵洪枫,刚铁,何敏. 对接接头焊件缺陷空间定位及分布特征研究. 徐州工程学院学报(自然科学版). 2023(02): 55-62 .
    7. 董慧. 基于二元函数拟合的X射线焊缝图像缺陷分割方法. 焊接技术. 2023(07): 18-22 .
    8. 孙远,石端虎. T形接头角焊缝气孔缺陷空间位置数据的自动提取. 盐城工学院学报(自然科学版). 2023(02): 25-31 .
    9. 洪祥,张海越,宋骐. 基于图像识别的AH36钢激光焊缝节点定位技术研究. 计算机测量与控制. 2023(11): 299-305+314 .
    10. 蔡文龙,赵振,李文忠. 基于机器视觉的航空插头焊杯定位. 计算机仿真. 2022(06): 53-56 .
    11. 强伟,路永新,袁银辉,孙粲. T形接头冷丝填充双热源协同焊接数值模拟. 材料科学与工艺. 2021(05): 57-62 .
    12. 石端虎,吴三孩,历长云,沙静,孙远,杨峰. 对接接头焊件批量缺陷空间位置的可视化. 焊接. 2021(12): 48-52+66 .

    Other cited types(3)

Catalog

    Article views (542) PDF downloads (30) Cited by(15)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return