Advanced Search
LI Chaojun, YAN Yanfu, REN Xiaofei, WANG Yaming, WANG Hongna. Effect of LaNd on the spreadability of Ti-13Zr-21Cu-9Ni brazing fillers and the properties of TC4 joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(12): 74-79. DOI: 10.12073/j.hjxb.20200527002
Citation: LI Chaojun, YAN Yanfu, REN Xiaofei, WANG Yaming, WANG Hongna. Effect of LaNd on the spreadability of Ti-13Zr-21Cu-9Ni brazing fillers and the properties of TC4 joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(12): 74-79. DOI: 10.12073/j.hjxb.20200527002

Effect of LaNd on the spreadability of Ti-13Zr-21Cu-9Ni brazing fillers and the properties of TC4 joint

More Information
  • Received Date: May 26, 2020
  • Available Online: January 26, 2021
  • In order to optimize the properties of Ti-13Zr-21Cu-9Ni brazing fillers and obtain a good performance Ti alloy joint, rare earth element LaNd was added to Ti-13Zr-21Cu-9Ni brazing fillers. The commonly used TC4 alloy was used as the mother The effect of rare earth element LaNd on the spreading performance of Ti-13Zr-21Cu-9Ni brazing fillers and the performance of TC4 joints was studied by vacuum furnace, field emission scanning electron microscope, X-ray diffractometer and other equipment. The results showed that the spread area of Ti-13Zr-21Cu-9Ni-xLaNd brazing fillers and the shear strength of Ti-13Zr-21Cu-9Ni-xLaNd/TC4 brazed joints first increased and then decreased with the addition of LaNd increased. When the LaNd addition is 0.3%, Ti-13Zr-21Cu-9Ni-xLaNd brazing fillers has the largest spreading area, the maximum value is 0.74 cm2, which is 88.8% higher than the matrix; when the addition of LaNd continues to increase, the formed Cu5La phase greatly reduce the spreading performance of the brazing fillers. Ti-13Zr-21Cu-9Ni-xLaNd/TC4 brazed joint shear strength reaches the maximum when the LaNd addition is 0.3%, which is 157.1 MPa, which is 45.2% higher than the matrix. Therefore, the optimal addition of LaNd It should be around 0.3%.
  • Gurrappa I. Characterization of titanium alloy Ti-6Al-4V for chemical, marine and industrial applications[J]. Materials Characterization, 2003, 51(2−3): 131 − 139. doi: 10.1016/j.matchar.2003.10.006
    张田仓, 李晶, 季亚娟, 等. TC4钛合金线性摩擦焊接头组织和力学性能[J]. 焊接学报, 2010, 31(2): 53 − 56.

    Zhang Tiancang, Li Jing, Ji Yajuan, et al. Microstructure and mechanical properties of TC4 titanium alloy linear friction welded joints[J]. Transactions of the China Welding Institution, 2010, 31(2): 53 − 56.
    王晓阳, 曹健, 代翔宇, 等. Ag-Cu钎料钎焊ZTA陶瓷与TC4钛合金[J]. 焊接学报, 2019, 40(3): 47 − 51. doi: 10.12073/j.hjxb.2019400070

    Wang Xiaoyang, Cao Jian, Dai Xiangyu, et al. Brazing of ZTA ceramics and TC4 titanium alloy with Ag-Cu brazing fillers[J]. Transactions of the China Welding Institution, 2019, 40(3): 47 − 51. doi: 10.12073/j.hjxb.2019400070
    Yamada M. An overview on the development of titanium alloys for non-aerospace application in Japan[J]. Materials Science and Engineering A, 1996, 213(1−2): 8 − 15. doi: 10.1016/0921-5093(96)10241-0
    Li Li, Li Xiaoqiang, Hu Ke, et al. Brazeability evaluation of Ti-Zr-Cu-Ni-Co-Mo filler for vacuum brazing TiAl-based alloy[J]. Transactions of Nonferrous Metals Society of China, 2019, 29(4): 754 − 763. doi: 10.1016/S1003-6326(19)64985-X
    Qiu Q, Wang Y, Yang Z, et al. Microstructure and mechanical properties of TiAl alloy joints vacuum brazed with Ti–Zr–Ni–Cu brazing powder without and with Mo additive[J]. Materials and Design, 2016, 90(JAN.): 650 − 659.
    杨长勇, 徐九华, 丁文锋, 等. 稀土镧对Ag-Cu-Ti钎料微观组织与性能的影响(英文)[J]. 南京航空航天大学学报, 2008, 25(3): 230 − 234.

    Yang Changyong, Xu Jiuhua, Ding Wenfeng, et al. Effects of rare earth element Nd on microstructure and properities of Ag-Cu-Ti brazing fillers alloy[J]. Journal of Nanjing University of Aeronautics and Astronautics, 2008, 25(3): 230 − 234.
    王红娜. 稀土添加量对高强度钛基钎料性能的影响[D]. 洛阳: 河南科技大学, 2015.

    Wang Hongna. Effect of rare earth addition on properities of high strength titanium-based brazing fillers[D]. Luoyang: Henan University of Science and Technology, 2015.
    邹禧. 钎焊[M]. 北京: 机械工业出版社, 1989.

    Zou Xi. Brazing[M]. Beijing: Mechanical Industry Press, 1989.
    Young T. An essay on the cohesion of fluids[J]. Philosophical Transaction of the Royal Society of London, 1805, 95: 65 − 87.
    王要利, 程光辉, 张珂珂. Sn-2.5Ag-O.7Cu-0.1RE-xNi的润湿性能[J]. 材料热处理学报, 2016, 37(3): 24 − 29.

    Wang Yaoli, Cheng Guanghui, Zhang Keke. Wetting properties of Sn-2.5Ag-O. 7Cu-0.1RE-xNi[J]. Transactions of Materials and Heat Treatment, 2016, 37(3): 24 − 29.
    Liaw D W, Wu Z Y, Shiue R K, et al. Infrared vacuum brazing of Ti-6Al-4V and Nb using the Ti-15Cu-15Ni foil[J]. Materials Science and Engineering A, 2007, 25(4): 104 − 113.
    徐光宪. 稀土(下册)[M]. 北京: 冶金工业出版社, 1995.

    Xu Guangxian. Rare Earths[M]. Beijing: Metallurgical Industry Press, 1995.
    徐媛媛, 闫焉服, 李帅, 等. 循环周期对Sn3.0Ag0.5Cu/Cu钎焊接头界面化合物的影响[J]. 材料热处理学报, 2015, 36(1): 93 − 98.

    Xu Yuanyuan, Yan Yanfu, Li Shuai, et al. Effect of thermal cycles on intermetallic compounds of Sn3.0Ag0.5Cu/Cu and Cu brazing fillersing joint[J]. Transactions of Materials and Heat Treatment, 2015, 36(1): 93 − 98.
    Hong In-Ting, Koo Chun-Hao. Microstructural evolution and shear strength of brazing C103 and Ti-6Al-4V using Ti-20Cu-20Ni-20Zr filler metal[J]. International Journal of Refractory Metals and Hard Materials, 2006, 24(3): 247 − 252. doi: 10.1016/j.ijrmhm.2005.05.014
    崔约贤, 王长利. 金属断口分析[M]. 哈尔滨: 哈尔滨工业大学出版社, 1998.

    Cui Yuexian, Wang Changli. Analysis of metal fracture[M]. Harbin: Harbin Institute of Technology Press, 1998.
  • Related Articles

    [1]YU Huiping, FENG Feng, ZHANG Yiliang, ZHAO Erbing. Numerical analysis of elimination stainless steel welding residual stress by over load tension[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(8): 119-123.
    [2]CHEN Zhanglan, XIONG Yunfeng. Numerical analysis on deformation of welded construction[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2011, (5): 77-80.
    [3]YOU Min, LI Zhi, ZHAO Meirong, GUO Bin, YAN Jialing. Numerical analysis on stress distribution in adhesive-welded double lap joint of aluminum[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2009, (11): 13-16.
    [4]LEI Yucheng, WANG Jian, ZHU Bin. Numerical analysis on N2-Ar plasma welding arc[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (8): 17-20.
    [5]LI Bo, WU Jiefeng. Numerical analysis for cutting plasma arc[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2007, (9): 95-98.
    [6]LEI Yong-ping, HAN Feng-juan, Xia Zhi-dong, FENG Ji-cai. Numerical analysis of residual stress in ceramics/metal brazed joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2003, (5): 33-36,41.
    [7]Lü Jian-min, CHEN Huai-ning, LIN Quan-hong.. Numerical analysis of a method for relieving welding stresses of girth-weld pipes with small diameters[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2003, (4): 83-86.
    [8]HE Peng, FENG Ji-cai, QIAN Yi-yu, HAN Jie-chai, MAI Han-hui, JIA jin-guo. Numeric Analysis for Density Distribution of Element at the Interface in Diffusion Bonding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2002, (3): 80-82.
    [9]Dong Piming, Gu Fuming, Gao Jinqiang, Wang Erde, Tian Xitang. Numerical Analysis for Effect of Longitudinal Shrinkage of PerpendicularIntersection Weld on Flange Plane[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1999, (2): 132-138.
    [10]Zhao Xihua, Wu Lin, Liu Shubin, He Bing. Numerical analysis on force-amplification mechanism of welding tongs in spot-welding robots[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1993, (1): 35-39.
  • Cited by

    Periodical cited type(1)

    1. 杨书搏,刘元义,于圣洁,张悦,王丽娟,宋心宇. 基于逆向工程的设施农业就地翻土犁设计与试验. 中国农机化学报. 2023(12): 60-65 .

    Other cited types(1)

Catalog

    Article views (169) PDF downloads (12) Cited by(2)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return