Citation: | ZHOU Bokang, WEI Zhengying, LI Junfeng, WU Yunxiao, YANG Lixiang. 90W-7Ni-3Fe selective laser melting heat behavior analysis and experimental research[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(11): 76-82. DOI: 10.12073/j.hjxb.20200518002 |
Animesh Bose, Christopher A, Schuh Jay C. et al. Traditional and additive manufacturing of a new Tungsten heavy alloy alternative[J]. International Journal of Refractory Metals and Hard Materials, 2018, 73: 22 − 28.
|
Zhang Wanneng, Wang Linzhi, Feng Zhongxue, et al. Research progress on selective laser melting (SLM) of magnesium alloys: A review[J]. Optik, 2020, 207: 163842.
|
Balasubramanian Nagarajan, Hu Zhiheng, Song Xu, et al. Development of micro selective laser melting: the state of the art and future perspectives[J]. Engineering, 2019, 5(4): 702 − 720.
|
YinYan, Zhang Yang , Dong Kaiji, et al. The development of 3D printing technology and the current situation of controlling defects in SLM technology[J]. China Welding, 2020, 29(3): 9 − 19.
|
Hoefer Kevin, Mayr Peter. 3DPMD – Arc-based additive manufacturing with titanium powder as raw material[J]. China Welding, 2019, 28(1): 11 − 15.
|
Iveković A, Omidvari N, Vrancken B, et al. Selective laser melting of tungsten and tungsten alloys[J]. International Journal of Refractory Metals and Hard Materials, 2018, 72: 27 − 32.
|
Yadroitsev I, Gusarov A, Yadroitsava I, et al. Single track formation in selective laser melting of metal powders[J]. Journal of Materials Processing Tech., 2010, 210(12): 1624 − 1631.
|
Mishra A K, Kumar A. Numerical and experimental analysis of the effect of volumetric energy absorption in powder layer on thermal-fluidic transport in selective laser melting of Ti6Al4V[J]. Optics and Laser Technology, 2019, 111: 227 − 239.
|
Zhang D Q, Cai Q Z, Liu J H, et al. Select laser melting of W–Ni–Fe powders: simulation and experimental study[J]. International Journal of Advanced Manufacturing Technology, 2010, 51(5−8): 649 − 658. doi: 10.1007/s00170-010-2641-3
|
Li Y, Gu D. Thermal behavior during selective laser melting of commercially pure titanium powder: Numerical simulation and experimental study[J]. Additive Manufacturing, 2014, 1−4: 99 − 109. doi: 10.1016/j.addma.2014.09.001
|
Konda Gokuldoss Prashanth. Selective Laser Melting: Materials and Applications[J]. Journal of Manufacturing and Materials Processing, 2020, 4(1): 13.
|
Li J F, Wei Z Y, Yang L X, et al. Finite element analysis of thermal behavior and experimental investigation of Ti6Al4V in selective laser melting[J]. Optik, 2020, 207: 163760.
|
Casalino G, Campanelli S L , Contuzzi N, et al. Experimental investigation and statistical optimisation of the selective laser melting process of a maraging steel[J]. Optics and Laser Technology, 2015, 65: 151 − 158.
|
J.-P. Kruth, G. Levy, F. Klocke, et al Consolidation phenomena in laser and powder-bed based layered manufacturing[J]. CIRP Annals - Manufacturing Technology, 2007, 56(2): 730 − 759.
|
Rombouts M, Froyen L, Gusarov A V, et al. Light extinction in metallic powder beds: Correlation with powder structure[J]. Journal of Applied Physics, 2005, 98(1): 013533.1 − 013533.9.
|
Thummler F, Oberacker R. Introduction to powder metallurgy[M]. London: The Universtity Press, 1993.
|
[1] | LI Geng, WANG Shang, SUN Yuxin, MENG Junhao, WU Wenzhi, TIAN Yanhong. Reliability optimization of solder joints in large-sized COTS devices based on solder mask layer design[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION. DOI: 10.12073/j.hjxb.20240319003 |
[2] | LIU Xudong, SA Zicheng, FENG Jiayun, LI Haozhe, TIAN Yanhong. The Development Status On Advanced Packaging Copper Pillar Bump Interconnection Technology and Reliability[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION. DOI: 10.12073/j.hjxb.20240718001 |
[3] | WANG Haichao, PENG Xiaowei, GUO Fan, DING Yingjie, CHEN Qiang. Research on reliability of CCGA reinforcement process for aerospace electronic products[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(7): 102-107. DOI: 10.12073/j.hjxb.20210907001 |
[4] | NAN Xujing, LIU Xiaoyan, CHEN Leida, ZHANG Tao. Effect of thermal cycling on reliability of solder joints of ceramic column grid array package[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(2): 81-85. DOI: 10.12073/j.hjxb.20200331003 |
[5] | TIAN Ye. Study on reliability of micro-solder joints for flip chip assemblies under thermal shock-crack growth mechanism[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(9): 43-45,50. |
[6] | YE Huan, XUE Songbai, ZHANG Liang, WANG Hui. Finite element analysis on reliability of lead-free soldered joints for CSP device[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2009, (11): 93-96. |
[7] | JI Feng, XUE Songbai, ZHANG Liang, WANG Hui. Finite element analysis on soldered joint reliability of QFN device[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2009, (10): 57-60. |
[8] | GAO Lili, XUE Songbai, ZHANG Liang, SHENG Zhong. Finite element analysis on influencing factors of soldered column reliability in a CCGA device[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (7): 93-96. |
[9] | LIN Guoxiang, YE Jinbao, QIU Changjun. Calculating method of reliability on anti fatigue fracture of weld[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (1): 50-52. |
[10] | ZHANG Liang, XUE Songbai, LU Fangyan, HAN Zongjie. Finite element analysis on soldered joint reliability of QFP device with different solders[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2007, (10): 45-48, 52. |
1. |
于一强,张宝贵,杨琨,唐一峰,陈宗旭,张雪芹. 超薄不锈钢激光焊接工艺对接头力学性能的影响. 金属加工(热加工). 2025(03): 90-94 .
![]() | |
2. |
韩晓辉,刘桐,李刚卿,方喜风. 轨道客车连接技术难题及发展趋势. 电焊机. 2024(09): 1-13 .
![]() |