Advanced Search
HAN Zhiyong, LU Bowen, WANG Shicheng. Effect of Pt modification on oxidation properties and microstructure of NiAl coatings[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(9): 44-48. DOI: 10.12073/j.hjxb.20200511005
Citation: HAN Zhiyong, LU Bowen, WANG Shicheng. Effect of Pt modification on oxidation properties and microstructure of NiAl coatings[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(9): 44-48. DOI: 10.12073/j.hjxb.20200511005

Effect of Pt modification on oxidation properties and microstructure of NiAl coatings

More Information
  • Received Date: May 10, 2020
  • Available Online: December 27, 2020
  • NiAl coatings was fabricated on Hastelloy X substrate by atmospheric plasma spraying technique, and Pt was electroplated on NiAl coatings and vacuum diffusion was performed to prepare high performance Ni-Al-Pt coatings. High temperature oxidation tests were carried out on NiAl coatings and Pt modified coatings to observe and analyze the oxidation behavior, phase composition and microstructure of the two coatings. The oxidation kinetic curve results show that, compared with the NiAl coatings, the oxidation kinetics curve of the modified coating is closer to the parabola, and the weight gain in the late oxidation period is slower. XRD results show that the Pt modified coating can quickly form a continuous and dense Al2O3 film on the surface at the initial stage of oxidation. When it is oxidized to 90 h, the coating surface is still mainly α-Al2O3. The SEM results showed that after Pt modified coating oxidation for 30 min, a mixed structure of θ-Al2O3 and α-Al2O3 appeared on the surface of the coating. After the coating was oxidized for 35 h, the θ-Al2O3 basically transformed into continuous and dense α-Al2O3. When the coating is oxidized for 90 h, the coating surface is mainly composed of sheet-like α-Al2O3 and agglomerated NiO, the coating still has higher oxidation resistance.
  • 孙戬, 徐颖强, 李万钟, 等. 热生长下热障涂层残余应力及失效分析[J]. 中国表面工程, 2016, 29(1): 25 − 31.

    Sun Jian, Xu Yingqiang, Li Wanzhong, et al. Residual stress and failure analysis of thermal barrier coatings with thermal growth[J]. China Surface Engineering, 2016, 29(1): 25 − 31.
    陈文龙, 刘敏, 张吉阜. 7YSZ热障涂层高温氧化过程中的微结构演变和阻抗谱分析[J]. 中国表面工程, 2016, 29(3): 48 − 56.

    Chen Wenlong, Liu Min, Zhang Jifu. Microstructure evolution and impedance spectroscopy analysis of 7YSZ thermal barrier coating during high-temperature oxidation process[J]. China Surface Engineering, 2016, 29(3): 48 − 56.
    Pei Xinjun, Liu Wenbin, Cheng Ge, et al. Fabrication of in-situ synthesized ceramic reinforced Ni-based alloy composite coatings by reactive braze coating processing[J]. China Welding, 2019, 28(4): 56 − 62.
    Wang Ruijun, Xu Tianyang, Ma Xiaobin, et al. Performance study of a complex thermal barrier functional coating with an electro-spark deposited burn-resistant layer[J]. China Welding, 2019, 28(2): 24 − 28.
    韩志勇, 丘珍珍, 史文新, 等. CoCrAlY表面改性后热障涂层高温氧化及热震性能[J]. 焊接学报, 2019, 40(6): 19 − 22.

    Han Zhiyong, Qiu Zhenzhen, Shi Wenxin, et al. High temperature oxidation and thermal shock properties of thermal barrier coating by CoCrAlY surface modification[J]. Transactions of the China Welding Institution, 2019, 40(6): 19 − 22.
    Li Y, Li C J, Zhang Q, et al. Influence of TGO composition on the thermal shock lifetime of thermal barrier coatings with cold-sprayed MCrAlY bond coat[J]. Journal of Thermal Spray Technology, 2010, 19(1−2): 168 − 177. doi: 10.1007/s11666-009-9372-8
    Ke P L, Wu Y N, Wang Q M, et al. Study on thermal barrier coatings deposited by detonation gun spraying[J]. Surface & Coatings Technology, 2004, 200(7): 2271 − 2276.
    韩志勇, 韩剑, 靖珍珠. HCPEB作用下镀铝CoCrAlY涂层的表面微观结构状态[J]. 焊接学报, 2016, 37(11): 31 − 34.

    Han Zhiyong, Han Jian, Jing Zhenzhu. Surface microstructure of aluminum-coated CoCrAlY coating under the action of HCPEB[J]. Transactions of the China Welding Institution, 2016, 37(11): 31 − 34.
    Wang Y, Yang Y, Yan M F. Microstructures hardness and erosion behavior of thermal sprayed and heat treated NiAl coatings with different ceria[J]. Wear, 2006, 263(1): 371 − 378.
    Li H F, Fan X T, Gong S K. Inter-diffusion and oxidation behavior in electron-beam evaporated NiAl coatings[J]. Vacuum, 2006, 81(3): 329 − 337. doi: 10.1016/j.vacuum.2006.05.010
    臧俊杰. 热浸镀Si改性铝化物涂层不同条件下高温氧化性能的研究[D]. 昆明: 昆明理工大学, 2017.

    Zang Junjie. Study on high temperature oxidation properties of hot dip Si-modified aluminide coatings under different conditions[D]. Kunming: Kunming University of Science and Technology, 2017.
    张德丰, 陆建生, 宋鹏, 等. 铂改性铝化物涂层的热生长层内应力研究[J]. 稀有金属材料与工程, 2011, 40(11): 1956 − 1960.

    Zhang Defeng, Lu Jiansheng, Song Peng, et al. TGO stress growth for Pt-modified aluminide bond coats during high temperature oxidation[J]. Rare Metal Materials and Engineering, 2011, 40(11): 1956 − 1960.
    Han Z Y, Shi W X, Wang Z, et al. Oxidation behavior of thermally grown oxide on aluminized coating Irradiated by high-current pulsed electron beam[J]. Metallography, Microstructure, and Analysis, 2019, 8(5): 726 − 734. doi: 10.1007/s13632-019-00572-x
    黄凌峰, 刘建明, 王帅, 等. 复合电镀MCrAlY涂层研究进展[J]. 热喷涂技术, 2019, 11(2): 1 − 4.

    Huang Lingfeng, Liu Jianming, Wang Shuai, et al. Research progress of composite electroplated MCrAlY coating[J]. Thermal Spray Technology, 2019, 11(2): 1 − 4.
    Evans U R. Corrosion and oxidation of metals[M]. Beijing: China Machine Press, 1976.
    Pint B A, Treska M, Hobbs L W. The effect of various oxide dispersions on the phase composition and morphology of Al2O3 scales grown on β-NiAl[J]. Oxidation of Metals, 1997, 47(1-2): 1 − 20. doi: 10.1007/BF01682369
    李美栓, 周延春. Al2O3形成合金过渡态氧化行为[J]. 腐蚀科学与防护技术, 2005, 17(6): 409 − 412.

    Li Meishuan, Zhou Yanchun. Transient oxidation of Al2O3 forming alloys[J]. Corrosion Science and Protection Technology, 2005, 17(6): 409 − 412.
  • Related Articles

    [1]XU Nan, XU Yuzhui, GAO Tianxu, SONG Qining, BAO Yefeng. The influence of welding thermal cycle on the grain structure of friction stir welded 5083 aluminum alloy joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION. DOI: 10.12073/j.hjxb.20240315001
    [2]XIAO Wenbo, HE Yinshui, YUAN Haitao, MA Guohong. Synchronous real-time detection of weld bead geometry and the welding torch in galvanized steel GAMW[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(12): 78-82. DOI: 10.12073/j.hjxb.20201021001
    [3]CUI Bing1,2, PENG Yun2, PENG Mengdu2, AN Tongbang2. Effects of weld thermal cycle on microstructure and properties of heataffected zone of Q890 processed steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2017, 38(7): 35-39. DOI: 10.12073/j.hjxb.20150427004
    [4]LIU Haodong, HU Fangyou, CUI Aiyong, LI Hongbo, HUANG Fei. Experimental on thermal cycle of laser welding with ultrasonic processing across different phases[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2015, 36(8): 13-17.
    [5]LÜ Xiaochun, HE Peng, QIN Jian, DU Bing, HU Zhongquan. Effect of welding thermal cycle on microstructure and properties of intercritically reheated coarse grained heat affected zone in SA508-3 steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2014, 35(12): 47-49.
    [6]WU Dong, LU Shanping, LI Dianzhong. Effect of welding thermal cycle on high temperature mechanical property of Ni-Fe base superalloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2014, 35(9): 69-72.
    [7]HU Yanhua, CHEN Furong, XIE Ruijun, LI Haitao. Designment of test program system for welding thermal cycle in weld zone[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2010, (5): 93-96.
    [8]HU Yanhua, CHEN Furong, XIE Ruijun, LI Haitao. In-situ detection of weld metal thermal cycle of 10CrMo910 steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2009, (10): 105-107.
    [9]CHEN Yu-hua, WANG Yong. Numerical simulation of thermal cycle of in-service welding onto active pipeline based on SYSWELD[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2007, (1): 85-88.
    [10]YAO Shang-wei, ZHAO Lu-yu, XU Ke, WANG Ren-fu. Effect of welding thermal cycle on toughness of continuous cast-ing steel center[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2006, (10): 97-100.
  • Cited by

    Periodical cited type(1)

    1. 温淳杰,姚屏,范谨锐,曾祥坤,喻小燕,武威. 316L不锈钢和镍基合金梯度材料MIG焊电弧增材制造工艺研究. 精密成形工程. 2024(10): 208-216 .

    Other cited types(1)

Catalog

    Article views (307) PDF downloads (12) Cited by(2)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return