Advanced Search
WANG Honghui, DONG Shulei, QIAN Jiankang, TANG Kegang, CHEN Yuan. Microstructure and properties of automatic welding process of X80 pipeline steel under extremely cold conditions[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(11): 83-88. DOI: 10.12073/j.hjxb.20200413002
Citation: WANG Honghui, DONG Shulei, QIAN Jiankang, TANG Kegang, CHEN Yuan. Microstructure and properties of automatic welding process of X80 pipeline steel under extremely cold conditions[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(11): 83-88. DOI: 10.12073/j.hjxb.20200413002

Microstructure and properties of automatic welding process of X80 pipeline steel under extremely cold conditions

More Information
  • Received Date: April 12, 2020
  • Available Online: November 06, 2020
  • In order to study the effect of cold environment of −30 ℃ on the weldability of multi-layer and multi-pass welding of X80 pipeline steel, the microstructure, tensile property, microhardness and toughness of 22 mm thick welding joints were analyzed. The results show that the fusion zone is mainly composed of acicular ferrite and proeutectoid ferrite, and there are a large number of M/A particles in coarse grain zone. The microhardness distribution of welded joints is M-shaped, which is related to a large number of lath bainite ferrite. The average tensile strength of welded joints is 684 MPa, and it exhibits the typical characteristics of ductile fracture. The average impact absorption energy of fusion zone is 83 J. The cold environment improves the cooling rate and promotes the precipitation of acicular ferrite and M/A particles. Compared to normal environment, the tensile strength and microhardness of joints increase, but the toughness decreases dramatically. Meanwhile, it is easy to form porosity during welding in the cold environment.
  • 刘成, 尹立孟, 姚宗湘, 等. 焊缝余高对复合型坡口X80管线钢多层多道焊接残余应力的影响[J]. 焊接学报, 2018, 39(12): 100 − 104, 133. doi: 10.12073/j.hjxb.2018390306

    Liu Cheng, Yin Limeng, Yao Zongxiang, et al. Effect of reinforcement on residual stress of multi-layer and multi-pass welding of composite groove X80 pipeline steel[J]. Transactions of the China Welding Institution, 2018, 39(12): 100 − 104, 133. doi: 10.12073/j.hjxb.2018390306
    Zhang W W, Li H, Chi Q, et al. Technical specifications for X80 OD 1 422 mm line pipes and corresponding products[J]. Natural Gas Industry B, 2016, 3(5): 485 − 492. doi: 10.1016/j.ngib.2017.02.009
    尹长华, 杨武堂. −20 ℃低温环境下大口径X80钢管的焊接[J]. 焊接技术, 2009, 38(5): 19 − 23. doi: 10.3969/j.issn.1002-025X.2009.05.006

    Yin Zhanghua, Yang Wutang. Welding of the big diameter X80 pipe in low temperature environment of −20 ℃[J]. Welding Technology, 2009, 38(5): 19 − 23. doi: 10.3969/j.issn.1002-025X.2009.05.006
    肖晓华, 卢东华, 王丰, 等. X80钢低温焊接接头组织与性能研究[J]. 热加工工艺, 2014, 43(13): 169 − 172.

    Xiao Xiaohua, Lu Donghua, Wang Feng, et al. Study on microstructure and properties of welded joint of X80 steel at low temperature[J]. Hot Working Technology, 2014, 43(13): 169 − 172.
    肖晓华, 梁斐珂, 邓龙, 等. 焊接电流对X80钢低温焊接接头组织与性能的影响[J]. 材料导报, 2016, 30(2): 85 − 89, 94.

    Xiao Xiaohua, Liang Feike, Deng Long, et al. Effects of welding current on microstructure and properties of low-temperature welded joints of X80 steel[J]. Materials Reports, 2016, 30(2): 85 − 89, 94.
    An T, Peng H T, Bai P P, et al. Influence of hydrogen pressure on fatigue properties of X80 pipeline steel[J]. International Journal of Hydrogen Energy, 2017, 42: 15669 − 15678. doi: 10.1016/j.ijhydene.2017.05.047
    Yin L M, Wang J Z, Chen X Z. Microstructures and their distribution within HAZ of X80 pipeline steel welded using hybrid laser-MIG welding[J]. Welding in the World, 2018, 62(4): 721 − 727. doi: 10.1007/s40194-018-0582-x
    李鹤林, 郭生武, 冯耀荣, 等. 高强度微合金管线钢显微组织分析与鉴别图谱[M]. 北京: 石油工业出版社, 2001.

    Li Helin, Guo Shnegwu, Feng Yaorong, et al. An illustrative collection of microstructure micrographs of high strength micra-alloyed steels[M]. Beijing: Petroleum Industry Press, 2001.
    李亚江. 焊接冶金原理[M]. 北京: 化学工业出版社, 2015.

    Li Yajiang. Principle of welding metallurgy[M]. Beijing: Chemical Industry Press, 2015.
    Peng H T, An T, Zheng S Q. Investigation of hydrogen embrittlement susceptibility of X80 weld joints by thermal simulation[J]. Journal of Materials Engineering and Performance, 2018, 27(5): 2513 − 2523. doi: 10.1007/s11665-018-3330-x
    Qiang B, Wang X. Ductile crack growth behaviors at different locations of a weld joint for an X80 pipeline steel: A numerical investigation using GTN models[J]. Engineering Fracture Mechanics, 2019, 213: 264 − 279. doi: 10.1016/j.engfracmech.2019.04.009
    Moeinifar S, Kokabi A H, Hosseini H R M. Role of tandem submerged arc welding thermal cycles on properties of the heat affected zone in X80 microalloyed pipe line steel[J]. Journal of Materials Processing Technology, 2011, 211(3): 368 − 375. doi: 10.1016/j.jmatprotec.2010.10.011
  • Related Articles

    [1]DONG Yijun, WANG Yonggang, LI Dongya, ZHU Shanshan, XU Shuhong, WANG Yao. Heat treatment tailoring of microstructure and properties of laser cladding carbide reinforced nickel based coatings[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(10): 59-68. DOI: 10.12073/j.hjxb.20231221002
    [2]YU Tingxiang, FENG Wei, CHEN Bo, ZHANG Qingsu, ZHOU Baojin, LIU Xin, LIU Manyu. Mechanism of heat treatment temperature on microstructure and properties in deposited metal of 1000 MPa grade high strength steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(6): 97-104, 112. DOI: 10.12073/j.hjxb.20231103001
    [3]FAN Jiawei, LI Zhuoxuan, WU Haosheng, LIU Guangyin, ZHANG Jianxiao, HUANG Jiankang. Numerical study of the effect of carbide precipitation on the mechanical properties of ENiCrFe-3 pre-edge welded dissimilar steel welds[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(6): 67-73. DOI: 10.12073/j.hjxb.20220721001
    [4]FU Lichao, ZHAO Xin, YANG Qingxiang. Precipitation behavior of carbide in hardfacing coating containing Nb[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2015, 36(6): 39-43.
    [5]SU Yunhai, MA Dahai, QIN Hao, LIU Zhengjun. Formation mechanism of Cr7C3 hard phase under magnetic field[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2014, 35(2): 63-66.
    [6]TANG Wenbo, GUO Yungang, ZHANG Yawei, WANG Hongrui. Microstructures and wear resistance of hardfacing alloy containing internally produced carbide particulates[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2010, (8): 73-76.
    [7]LEI Yucheng, GU Kangjia, ZHU Qiang, CHEN Xizhang, JU Xin, CHANG Fenghua. Hardness and microstructure of China low activation martensitic steel fusion welded joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2009, (11): 9-12.
    [8]ZHANG Tianhong, DU Yi, ZHANG Junxu. Effect of carbon and nitrogen on microstructure and properties of austenite weld metal[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2007, (7): 81-84,88.
    [9]LU Fenggui, LU Binfeng, TANG Xinghua, YAO Shun. Chromium Carbide in situ synthesis by vacuum electron beam[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2007, (6): 34-36.
    [10]ZHANG Yuan-bin, Ren deng-yi. Study on Carbides in Surfacing Layer[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2002, (5): 38-40.
  • Cited by

    Periodical cited type(2)

    1. 栗振鑫,蔡创,余杰,陈梓琳,熊发帅,汤坪,陈辉. 激光摆动对TC4钛合金窄间隙焊接接头组织性能的影响. 中国激光. 2025(08): 77-86 .
    2. 郭克星. 铝合金激光焊接技术研究进展. 热处理. 2024(06): 1-7 .

    Other cited types(2)

Catalog

    Article views (628) PDF downloads (38) Cited by(4)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return