Advanced Search
WANG Honghui, DONG Shulei, QIAN Jiankang, TANG Kegang, CHEN Yuan. Microstructure and properties of automatic welding process of X80 pipeline steel under extremely cold conditions[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(11): 83-88. DOI: 10.12073/j.hjxb.20200413002
Citation: WANG Honghui, DONG Shulei, QIAN Jiankang, TANG Kegang, CHEN Yuan. Microstructure and properties of automatic welding process of X80 pipeline steel under extremely cold conditions[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(11): 83-88. DOI: 10.12073/j.hjxb.20200413002

Microstructure and properties of automatic welding process of X80 pipeline steel under extremely cold conditions

More Information
  • Received Date: April 12, 2020
  • Available Online: November 06, 2020
  • In order to study the effect of cold environment of −30 ℃ on the weldability of multi-layer and multi-pass welding of X80 pipeline steel, the microstructure, tensile property, microhardness and toughness of 22 mm thick welding joints were analyzed. The results show that the fusion zone is mainly composed of acicular ferrite and proeutectoid ferrite, and there are a large number of M/A particles in coarse grain zone. The microhardness distribution of welded joints is M-shaped, which is related to a large number of lath bainite ferrite. The average tensile strength of welded joints is 684 MPa, and it exhibits the typical characteristics of ductile fracture. The average impact absorption energy of fusion zone is 83 J. The cold environment improves the cooling rate and promotes the precipitation of acicular ferrite and M/A particles. Compared to normal environment, the tensile strength and microhardness of joints increase, but the toughness decreases dramatically. Meanwhile, it is easy to form porosity during welding in the cold environment.
  • 刘成, 尹立孟, 姚宗湘, 等. 焊缝余高对复合型坡口X80管线钢多层多道焊接残余应力的影响[J]. 焊接学报, 2018, 39(12): 100 − 104, 133. doi: 10.12073/j.hjxb.2018390306

    Liu Cheng, Yin Limeng, Yao Zongxiang, et al. Effect of reinforcement on residual stress of multi-layer and multi-pass welding of composite groove X80 pipeline steel[J]. Transactions of the China Welding Institution, 2018, 39(12): 100 − 104, 133. doi: 10.12073/j.hjxb.2018390306
    Zhang W W, Li H, Chi Q, et al. Technical specifications for X80 OD 1 422 mm line pipes and corresponding products[J]. Natural Gas Industry B, 2016, 3(5): 485 − 492. doi: 10.1016/j.ngib.2017.02.009
    尹长华, 杨武堂. −20 ℃低温环境下大口径X80钢管的焊接[J]. 焊接技术, 2009, 38(5): 19 − 23. doi: 10.3969/j.issn.1002-025X.2009.05.006

    Yin Zhanghua, Yang Wutang. Welding of the big diameter X80 pipe in low temperature environment of −20 ℃[J]. Welding Technology, 2009, 38(5): 19 − 23. doi: 10.3969/j.issn.1002-025X.2009.05.006
    肖晓华, 卢东华, 王丰, 等. X80钢低温焊接接头组织与性能研究[J]. 热加工工艺, 2014, 43(13): 169 − 172.

    Xiao Xiaohua, Lu Donghua, Wang Feng, et al. Study on microstructure and properties of welded joint of X80 steel at low temperature[J]. Hot Working Technology, 2014, 43(13): 169 − 172.
    肖晓华, 梁斐珂, 邓龙, 等. 焊接电流对X80钢低温焊接接头组织与性能的影响[J]. 材料导报, 2016, 30(2): 85 − 89, 94.

    Xiao Xiaohua, Liang Feike, Deng Long, et al. Effects of welding current on microstructure and properties of low-temperature welded joints of X80 steel[J]. Materials Reports, 2016, 30(2): 85 − 89, 94.
    An T, Peng H T, Bai P P, et al. Influence of hydrogen pressure on fatigue properties of X80 pipeline steel[J]. International Journal of Hydrogen Energy, 2017, 42: 15669 − 15678. doi: 10.1016/j.ijhydene.2017.05.047
    Yin L M, Wang J Z, Chen X Z. Microstructures and their distribution within HAZ of X80 pipeline steel welded using hybrid laser-MIG welding[J]. Welding in the World, 2018, 62(4): 721 − 727. doi: 10.1007/s40194-018-0582-x
    李鹤林, 郭生武, 冯耀荣, 等. 高强度微合金管线钢显微组织分析与鉴别图谱[M]. 北京: 石油工业出版社, 2001.

    Li Helin, Guo Shnegwu, Feng Yaorong, et al. An illustrative collection of microstructure micrographs of high strength micra-alloyed steels[M]. Beijing: Petroleum Industry Press, 2001.
    李亚江. 焊接冶金原理[M]. 北京: 化学工业出版社, 2015.

    Li Yajiang. Principle of welding metallurgy[M]. Beijing: Chemical Industry Press, 2015.
    Peng H T, An T, Zheng S Q. Investigation of hydrogen embrittlement susceptibility of X80 weld joints by thermal simulation[J]. Journal of Materials Engineering and Performance, 2018, 27(5): 2513 − 2523. doi: 10.1007/s11665-018-3330-x
    Qiang B, Wang X. Ductile crack growth behaviors at different locations of a weld joint for an X80 pipeline steel: A numerical investigation using GTN models[J]. Engineering Fracture Mechanics, 2019, 213: 264 − 279. doi: 10.1016/j.engfracmech.2019.04.009
    Moeinifar S, Kokabi A H, Hosseini H R M. Role of tandem submerged arc welding thermal cycles on properties of the heat affected zone in X80 microalloyed pipe line steel[J]. Journal of Materials Processing Technology, 2011, 211(3): 368 − 375. doi: 10.1016/j.jmatprotec.2010.10.011
  • Related Articles

    [1]YUAN Mingxin, DAI Xianling, LIU Chao, SUN Hongwei, WANG Lei. Feature parameters extraction of ship welds based on spatial position and contour distance[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(1): 84-92. DOI: 10.12073/j.hjxb.20211208002
    [2]HE Jianping, TAO Xuyang, JI Yongfeng. Dynamic distribution characteristic of temperature field and weld morphology control in pulsed microplasma arc welding ultra-thin sheets[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(9): 67-73. DOI: 10.12073/j.hjxb.20200423001
    [3]WANG Angyang, HE Jianping, WANG Xiaoxia, LINYANG Shenlan. Distribution characteristics and parameters effects of MPLW arc[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2017, 38(8): 77-81. DOI: 10.12073/j.hjxb.20151007002
    [4]JIANG Qixiang, ZOU Yirong, DU Dong. Spatial distribution measurement of gas tungsten arc current density based on image analysis[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(8): 101-104.
    [5]CHEN Haiyong, DU Xiaolin, DONG Yan. Tiny visual feature extraction of random changing weld[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(5): 97-101.
    [6]SHI Duanhu, GANG Tie, YANG Feng. Automatic corresponding criterion of bulk defects in I style weldments[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2012, (5): 53-56.
    [7]SHI Duanhu, GANG Tie, HUANG Chuanhui, YANG Genxi. Automated extraction of spatial locating data for bulk defects in double T joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2010, (4): 69-72.
    [8]SHI Duan-hu, GANG Tie, YUAN Yuan. Spatial distribution features of weld defects in complex structure[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2005, (11): 71-74.
    [9]SHI Yu-xiang, QIAO Ya-xia, Masahiro TOYOSADA. Distribution feature of welding aerosol particle size[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2003, (1): 31-34.
    [10]Han Guoming, Li Junyue, Wu Zhao, Liu Gang. Distribution Feature of Welding Arc Ultraviolet Spestrum[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1999, (4): 213-218.
  • Cited by

    Periodical cited type(12)

    1. 汪孟杰,安康,祝贺,陈瑶,王李冬. 基于机器视觉技术的工业焊板焊缝位置检测系统. 物联网技术. 2025(01): 9-14+20 .
    2. 赵秋,唐琨,李英豪,林铮哲,陈鹏. 钢桥面板对接焊缝表面多缺陷疲劳效应研究. 铁道标准设计. 2024(03): 133-140+162 .
    3. 强伟,王克鸿,彭勇,袁银辉,路永新,董会. V形耦合双热源自熔焊接热-力分布特征. 稀有金属. 2024(04): 529-538 .
    4. 薛辰宇,石端虎,甄紫,孙远. 对接接头焊件射线检测图像焊缝区的自适应提取. 焊接技术. 2024(08): 106-110 .
    5. 陈晓明,王丽,马良,周峰,袁山山. 钢筋工程焊缝质量检测技术研究进展. 北京理工大学学报. 2024(12): 1215-1224 .
    6. 石端虎,吴三孩,历长云,赵洪枫,刚铁,何敏. 对接接头焊件缺陷空间定位及分布特征研究. 徐州工程学院学报(自然科学版). 2023(02): 55-62 .
    7. 董慧. 基于二元函数拟合的X射线焊缝图像缺陷分割方法. 焊接技术. 2023(07): 18-22 .
    8. 孙远,石端虎. T形接头角焊缝气孔缺陷空间位置数据的自动提取. 盐城工学院学报(自然科学版). 2023(02): 25-31 .
    9. 洪祥,张海越,宋骐. 基于图像识别的AH36钢激光焊缝节点定位技术研究. 计算机测量与控制. 2023(11): 299-305+314 .
    10. 蔡文龙,赵振,李文忠. 基于机器视觉的航空插头焊杯定位. 计算机仿真. 2022(06): 53-56 .
    11. 强伟,路永新,袁银辉,孙粲. T形接头冷丝填充双热源协同焊接数值模拟. 材料科学与工艺. 2021(05): 57-62 .
    12. 石端虎,吴三孩,历长云,沙静,孙远,杨峰. 对接接头焊件批量缺陷空间位置的可视化. 焊接. 2021(12): 48-52+66 .

    Other cited types(3)

Catalog

    Article views (625) PDF downloads (37) Cited by(15)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return