Citation: | ZHANG Chao, CUI Lei, ZHANG Hengquan, WANG Jing, ZHANG Ran, HOU Ailin. Properties for the electron beam welds and friction stir welds of 9Cr-1.5W-0.15Ta heat resistant steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(11): 13-17. DOI: 10.12073/j.hjxb.20200401003 |
Matsukawa Y, Zinkle S. J One-dimensional fast migration of vacancy clusters in metals[J]. Science, 2007, 318: 959 − 962. doi: 10.1126/science.1148336
|
Wu Y, Zheng S, Zhu X, et al. Conceptual design of the fusion-driven subcritical system FDS-I[J]. Fusion Engineering and Design, 2006, 81: 1305 − 1311. doi: 10.1016/j.fusengdes.2005.10.015
|
Wu Y. Design status and development strategy of China liquid lithium–lead blankets and related material technology[J]. Journal of Nuclear Materials, 2007, 367–370: 1410 − 1415.
|
Huang Q, Wu Q, Li C, et al. Progress in development of fabrication of small TBMs for EAST and ITER[J]. Fusion Engineering and Design, 2010, 85: 2192 − 2195. doi: 10.1016/j.fusengdes.2010.08.028
|
Noh S, Ando M, Tanigawa H, et al. Friction stir welding of F82H steel for fusion applications[J]. Journal of Nuclear Materials, 2016, 478: 1 − 6. doi: 10.1016/j.jnucmat.2016.05.028
|
Zhang Kun, Luan Guohong, Fu Ruidong. Effect of natural aging on microstructure and mechanical properties of friction stir welded 7050-T7451 joints[J]. China Welding, 2016, 25(3): 16 − 22.
|
Poitevin Y, Aubert P, Diegele E, et al. Development of welding technologies for the manufacturing of European Tritium Breeder blanket modules[J]. Journal of Nuclear Materials, 2011, 417: 36 − 42. doi: 10.1016/j.jnucmat.2010.12.259
|
李胜利, 杨新岐, 唐文珅, 等. 新型9Cr-1Mo钢搅拌摩擦焊接头组织及性能[J]. 焊接学报, 2019, 40(4): 28 − 35.
Li Shengli, Yang Xinqi, Tang Wenshen, et al. Microstructure and mechanical properties of friction stir welded novel 9Cr-1Mo steel[J]. Transactions of the China Welding Institution, 2019, 40(4): 28 − 35.
|
Liu Jialun, Zhu Hao, Jiang Yue, et al. Evolution of residual stress field in 6No1 aluminum alloy friction stir welding joint[J]. China Welding, 2018, 27(4): 18 − 26.
|
王廷, 张峰, 李宁, 等. Ti60钛合金/GH3128高温合金电子束焊接头脆裂原因分析[J]. 焊接学报, 2017, 38(12): 19 − 22.
Wang Ting, Zhang Feng, Li Ning, et al. Analysis of embrittlement of Ti60 and GH3128 electron beam welded joint[J]. Transactions of the China Welding Institution, 2017, 38(12): 19 − 22.
|
Chen Guoqing, Zhang Banggang, Yang Yong, et al. Electron beam welding of sicp/2024 and 2219 aluminum alloy[J]. China Welding, 2019, 28(4): 51 − 55.
|
Chatterjee A, Chakrabarti D, Moitra A, et al. Effect of deformation temperature on the ductile–brittle transition behavior of a modified 9Cr–1Mo steel[J]. Materials Science and Engineering A, 2015, 630: 58 − 70. doi: 10.1016/j.msea.2015.01.076
|
Sawada K, Hara T, Tabuchi M, et al. Microstructure characterization of heat affected zone after welding in Mod. 9Cr–1Mo steel[J]. Materials Characterization, 2015, 101: 106 − 113. doi: 10.1016/j.matchar.2015.01.013
|
Pandey C, Giri A, Mahapatra M. Evolution of phases in P91 steel in various heat treatment conditions and their effect on microstructure stability and mechanical properties[J]. Materials Science and Engineering A, 2016, 664: 58 − 74. doi: 10.1016/j.msea.2016.03.132
|
Zurob H, Hutchinson C, Brechet Y, et al. Modeling recrystallization of microalloyed austenite: effect of coupling recovery, precipitation and recrystallization[J]. Acta Materialia, 2002, 50: 3077 − 3094. doi: 10.1016/S1359-6454(02)00097-6
|
Paul V, Saroja S, Albert S, et al. Microstructural characterization of weld joints of 9Cr reduced activation ferritic martensitic steel fabricated by different joining methods[J]. Materials Characterization, 2014, 96: 213 − 224. doi: 10.1016/j.matchar.2014.08.013
|
Das C, Albert S, Sam S, et al. Mechanical properties of 9Cr–1W reduced activation ferriticmartensitic steel weldment prepared by electron beam weldingprocess[J]. Fusion Engineering and Design, 2014, 89: 2672 − 2678. doi: 10.1016/j.fusengdes.2014.07.001
|
Zhou T, Yu H, Wang S. Effect of microstructural types on toughness and microstructural optimization of ultra-heavy steel plate: EBSD analysis and microscopic fracture mechanism[J]. Materials Science and Engineering A, 2016, 658: 150 − 158. doi: 10.1016/j.msea.2016.02.001
|
Furuhara T. Key factors in grain refinement of martensite and bainite[J]. Materials Science Forum, 2010, 638: 3044 − 3049.
|
Morris JW Jr, Kinney C, Pytlewski K, et al. Microstructure and cleavage in lath martensitic steels[J]. Science and Technology of Advanced Materials, 2013, 14(1): 014208. doi: 10.1088/1468-6996/14/1/014208
|
Arlazarov A, Ollat M, Masse J P, et al. Influence of partitioning on mechanical behavior of Q & P steels[J]. Materials Science and Engineering A, 2016, 661: 79 − 86. doi: 10.1016/j.msea.2016.02.071
|
1. |
曾道平,郑韶先,安同邦,代海洋,马成勇. 440 MPa级高强钢焊条熔敷金属组织与低温冲击韧性研究. 焊接学报. 2024(03): 120-128+136 .
![]() | |
2. |
李冬毓,孙万田. 稳定化热处理对厚壁TP347钢管焊接接头组织和性能的影响. 焊接. 2023(05): 45-50 .
![]() |