Advanced Search
CHEN Qihao, CUI Shancheng, LIN Sanbao, GAO Xiang, ZHANG Ao. Characteristics of TIG overlaying welded joints of aluminum alloy before and after implementing ultrasonic frequency pulse electric signal[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(10): 42-46. DOI: 10.12073/j.hjxb.20200312001
Citation: CHEN Qihao, CUI Shancheng, LIN Sanbao, GAO Xiang, ZHANG Ao. Characteristics of TIG overlaying welded joints of aluminum alloy before and after implementing ultrasonic frequency pulse electric signal[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(10): 42-46. DOI: 10.12073/j.hjxb.20200312001

Characteristics of TIG overlaying welded joints of aluminum alloy before and after implementing ultrasonic frequency pulse electric signal

More Information
  • Received Date: March 11, 2020
  • Available Online: December 09, 2020
  • As a low-cost and high-efficiency welding method, arc overlaying welding has a broad application prospect in the field of material surface repair. In this study, ultrasonic energy is introduced into the TIG overlaying process to improve the welding quality of aluminum alloy by coupling the ultrasonic frequency pulse electrical signal with the low-frequency AC TIG welding electrical signal. The weld formation, microstructure, and hardness of overlaying welded joints of 5083 aluminum alloy were compared before and after implementing an ultrasonic pulse electrical signal. The results show that the weld formation changes towards the trend of decreased fusion wide and increased surplus height with the increase of the output voltage of the ultrasonic power. The grain size changs to some extent, but the grain morphology changs little after implementing the ultrasonic treatment. Grain refinement is the most significant in the fusion zone, but it is not obvious in the weld zone and the heat-affected zone. On the contrary, grain coarsening is obvious with the increase of the output voltage of the ultrasonic power. The distribution of the second phase in the fusion zone and the heat-affected zone shows an aggregation phenomenon. The ultrasonic effect has a great influence on the distribution of Mg element inside the grain. The segregation degree of Mg element at the grain boundary could be weakened by increasing the output voltage of the ultrasonic power. The hardness test results show that the weld hardness increases after coupling the ultrasonic frequency pulse electrical signal.
  • Wang Y J, Wei B, Guo Y Y, et al. Microstructure and mechanical properties of the joint of 6061 aluminum alloy by plasma-MIG hybrid welding[J]. China Welding, 2017, 26(2): 58 − 63.
    Wang D Q, Hua C, Lu H. Numerical analysis of ultrasonic waves in the gas tungsten arc welding (GTAW) with ultrasonic excitation of current[J]. International Journal of Heat and Mass Transfer, 2020, 158: 1 − 10.
    Chen C, Fan C L, Cai X X, et al. Characteristics of arc and metal transfer in pulsed ultrasonic-assisted GMAW[J]. Welding Journal, 2020, 99(7): 203s − 208s. doi: 10.29391/2020.99.019
    Fattahi M, Ghaheri A, Arabian N, et al. Applying the ultrasonic vibration during TIG welding as a promising approach for the development of nanoparticle dispersion strengthened aluminum weldments[J]. Journal of Materials Processing Technology, 2020, 282: 116672.
    Chen C, Fan C L, Liu Z, et al. Microstructure evolutions and properties of Al–Cu alloy joint in the pulsed power ultrasonic-assisted GMAW[J]. Acta Metallurgica Sinica (English Letters), 2020, 33(10): 1397 − 1406. doi: 10.1007/s40195-020-01066-4
    Dong H G, Yang L Q, Dong C, et al. Improving arc joining of Al to steel and Al to stainless steel[J]. Materials Science and Engineering A, 2012, 534: 424 − 435.
    Watanabe T, Shiroki M, Yanagisawa A, et al. Improvement of mechanical properties of ferritic stainless steel weld metal by ultrasonic vibration[J]. Journal of Materials Processing Technology, 2010, 210(12): 1646 − 1651. doi: 10.1016/j.jmatprotec.2010.05.015
    Yuan T, Kou S, Luo Z. Grain refining by ultrasonic stirring of the weld pool[J]. Acta Materialia, 2016, 106: 144 − 154. doi: 10.1016/j.actamat.2016.01.016
    雷玉成, 崔展祥, 路广遥, 等. 超声电弧对6061铝合金MIG焊接头组织和性能的影响[J]. 焊接学报, 2020, 41(2): 33 − 38. doi: 10.12073/j.hjxb.20191006002

    Lei Yucheng, Cui Zhanxiang, Lu Guangyao, et al. Effect of arc-ultrasonic on the microstructure and properties of 6061 aluminum alloy joint with MIG welding[J]. Transactions of the China Welding Institution, 2020, 41(2): 33 − 38. doi: 10.12073/j.hjxb.20191006002
    吴敏生, 段向阳, 李路明, 等. 电弧超声的激发及其特性研究[J]. 清华大学学报(自然科学版), 1999, 39(6): 110 − 112. doi: 10.3321/j.issn:1000-0054.1999.06.031

    Wu Minsheng, Duan Xiangyang, Li Luming, et al. Study of arc-ultrasonic excitation and its characteristics[J]. Journal of Tsinghua University (Science & Technology), 1999, 39(6): 110 − 112. doi: 10.3321/j.issn:1000-0054.1999.06.031
    He L B, Yang P, Li L M, et al. The ultrasonic characteristics of high frequency modulated arc and its application in material processing[J]. Ultrasonics, 2014, 54(8): 2178 − 2183. doi: 10.1016/j.ultras.2014.06.003
    张春雷, 吴敏生. 高频调制电弧超声发射及其物理特性[J]. 焊接学报, 2001, 22(1): 75 − 78. doi: 10.3321/j.issn:0253-360X.2001.01.021

    Zhang Chunlei, Wu Minsheng. High-frequency modulated arc as an ultrasonic generator and its physical property[J]. Transactions of the China Welding Institution, 2001, 22(1): 75 − 78. doi: 10.3321/j.issn:0253-360X.2001.01.021
    Chen X Z, Shen Z, Wang J J, et al. Effects of an ultrasonically excited TIG arc on CLAM steel weld joints[J]. International Journal of Advanced Manufacturing Technology, 2012, 60(5−8): 537 − 544. doi: 10.1007/s00170-011-3611-0
    Qi B J, Yang M X, Cong B Q, et al. The effect of arc behavior on weld geometry by high-frequency pulse GTAW process with 0Cr18Ni9Ti stainless steel[J]. International Journal of Advanced Manufacturing Technology, 2013, 66(9−12): 1545 − 1553. doi: 10.1007/s00170-012-4438-z
    许凯, 侯击波, 刘雅鑫, 等. 旋转磁场对ZL205A堆焊层组织与性能的影响[J]. 热加工工艺, 2019, 48(7): 69 − 72.

    Xu Kai, Hou Jibo, Liu Yaxin, et al. Influence of rotating magnetic field on microstructure and properties of ZL205A aluminum alloys surfacing layer[J]. Hot Working Technology, 2019, 48(7): 69 − 72.
    Chen C, Fan C L, Cai X Y, et al. Analysis of droplet transfer, weld formation and microstructure in Al-Cu alloy bead welding joint with pulsed ultrasonic-GMAW method[J]. Journal of Materials Processing Technology, 2019, 271: 144 − 151. doi: 10.1016/j.jmatprotec.2019.03.030
    陈琪昊, 林三宝, 杨春利, 等. 超声作用阶段及形式对熔池晶粒结晶的影响[J]. 焊接学报, 2020, 41(3): 29 − 32.

    Chen Qihao, Lin Sanbao, Yang Chunli, et al. Effect of different ultrasonic action stages on grain crystallization in TIG weld pool[J]. Transactions of the China Welding Institution, 2020, 41(3): 29 − 32.
    金礼, 徐敏, 薛家祥, 等. 热输入对铝合金双脉冲MIG焊接头性能的影响[J]. 焊接学报, 2018, 39(1): 89 − 92. doi: 10.12073/j.hjxb.2018390020

    Jin Li, Xu Min, Xue Jiaxiang, et al. Effect of line energy on properties of aluminum alloy joints in double pulsed MIG welding[J]. Transactions of the China Welding Institution, 2018, 39(1): 89 − 92. doi: 10.12073/j.hjxb.2018390020
  • Related Articles

    [1]WANG Rui, GAO Shaoze, LIU Weipeng, WANG Gang. A lightweight and efficient X-ray weld image defect detection method[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(7): 41-49. DOI: 10.12073/j.hjxb.20230630003
    [2]CHI Dazhao, GUO Tao, ZHANG Runqi, ZHANG Tao, SHEN Hao. Study on real-time imaging detection of bonding defects by acoustic impedance method[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(11): 107-111. DOI: 10.12073/j.hjxb.20220702001
    [3]WANG Rui, HU Yunlei, LIU Weipeng, LI Haitao. Defect detection of weld X-ray image based on edge AI[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(1): 79-84. DOI: 10.12073/j.hjxb.20210516001
    [4]GAO Xiangdong, XIE Yilong, CHEN Ziqin, YOU Deyong. Fractal feature detection of high-strength steel weld defects by magnetooptical imaging[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2017, 38(7): 1-4. DOI: 10.12073/j.hjxb.20150803001
    [5]AO Bo, WANG Naibo, HE Shenyuan, DENG Cuizhen. Three dimensional imaging of internal defects in small diameter pipe welding seam by X-ray microtomography[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(5): 11-14.
    [6]GAO Weixin, HU Yuheng, WU Xiaomeng. A new algorithm for detecting defects of sub-arc welding x-ray image based on compress sensor theory[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2015, 36(11): 85-88.
    [7]LI Xueqin, LIU Peiyong, YIN Guofu, JIANG Honghai. Weld defect detection by X-ray images method based on Fourier fitting surface[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2014, 35(10): 61-64.
    [8]CHI Dazhao, GANG Tie, YAO Yingxue, YUAN Yuan. Defect detection for red copper weldment using ultrasonic method[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2010, (5): 21-24.
    [9]CHEN Ming, MA Yuezhou, CHEN Guang. Weld defects detection for X-ray linear array real-time imaging[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2007, (6): 81-84.
    [10]CAI Guorui, DU Dong, TIAN Yuan, HOU Runshi, GAO Zhiling. Defect detection of X-ray images of weld using optimized heuristic search based on image information fusion[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2007, (2): 29-32.
  • Cited by

    Periodical cited type(5)

    1. 唐益爽,邹阳帆,李文亚,王卫兵,褚强,朱永山,汪庚. 协同双面搅拌摩擦焊接6061铝合金工艺. 电焊机. 2023(03): 72-76+110 .
    2. 回丽,李东澎,安金岚,崔浩,王坤宇. 连接工艺对铝合金搭接结构力学性能影响. 兵器材料科学与工程. 2022(03): 20-24 .
    3. 回丽,李东澎,宋万万,崔浩,安金岚,王坤宇. 腐蚀环境对搅拌摩擦点焊接结构力学性能的影响. 有色金属工程. 2022(06): 1-7 .
    4. 王方萍,柯展煌,赵英权,李志炜,李巧云,王炯铭,严洪,何秋婷. 一种U形结构换热器的制造技术. 压力容器. 2022(05): 83-88 .
    5. 徐锴,武鹏博,梁晓梅,陈健,黄瑞生. 铝合金激光-多股绞合焊丝MIG复合焊特性分析. 焊接学报. 2021(01): 16-23+98 . 本站查看

    Other cited types(1)

Catalog

    Article views (396) PDF downloads (34) Cited by(6)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return