Advanced Search
CAO Haitao, ZHANG Peng, DU Yunhui, LI Hongwu, WANG Yujie, SU Lijie. Optimization of Mg-Gd-Y-Zr laser welding process parameters and study on high temperature mechanical properties[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(10): 87-96. DOI: 10.12073/j.hjxb.20200221001
Citation: CAO Haitao, ZHANG Peng, DU Yunhui, LI Hongwu, WANG Yujie, SU Lijie. Optimization of Mg-Gd-Y-Zr laser welding process parameters and study on high temperature mechanical properties[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(10): 87-96. DOI: 10.12073/j.hjxb.20200221001

Optimization of Mg-Gd-Y-Zr laser welding process parameters and study on high temperature mechanical properties

More Information
  • Received Date: February 09, 2020
  • Available Online: December 06, 2020
  • The fiber laser welding is used to weld the T6 state Mg-10Gd-3Y-0.5Zr plate. Taking the high temperature tensile strength as the reference index. The process parameters were optimized by orthogonal test, and the influence of laser power on the high temperature mechanical properties of the joint was analyzed. The paper use SEM, XRD and HRTEM to observe and analyze the joint weld center structure, heat affected zone structure and high temperature tensile fracture. The results show that the laser power has the most significant effect on the high temperature mechanical properties of the welded joint. Under the optimal process parameters, the average high-temperature tensile strength of the welded joint is 292.1 MPa at 200 ℃, which is 84.5% of the base material. The elongation is 8.6%, which is up to 71.1% of the base material at 200 ℃. The change of laser power will affect the grain size, heat-affected width and phase composition of the weld, which will affect the high-temperature mechanical properties of the joint. The fracture modes of the welded joint and the base metal are ductile fractures at 200 ℃.The heat-affected zone is the weak part of the joint.
  • Zeng Z R, Stanford N, Davies C H J, et al. Magnesium extrusion alloys: a review of developments and prospects[J]. International Material Reviews, 2019, 64(1): 27 − 62. doi: 10.1080/09506608.2017.1421439
    Li W X, Wang L Y, Zhou B J, et al. Grain-scale deformation in a Mg-0.8wt% Y alloy using crystal plasticity finite element method[J]. Journal of Material Science & Technology, 2019, 35(10): 2200 − 2206.
    张东阳, 王林生, 郭斗斗. 稀土镁合金性能研究及应用[J]. 材料导报, 2015, 11(29): 514 − 516.

    Zhang Dongyang, Wang Linsheng, Guo Doudou. Research and application of rare earth magnesium alloy[J]. Material Reports, 2015, 11(29): 514 − 516.
    丁文江, 吴玉娟, 彭立明, 等. 高性能镁合金研究及应用的新进展[J]. 中国材料进展, 2010, 29(8): 37 − 45.

    Ding Wenjiang, Wu Yujuan, Peng Liming, et al. Research and application development of advanced magnesium alloys[J]. Material China, 2010, 29(8): 37 − 45.
    鲁志龙, 张大童, 张文, 等. 不同冷却介质下多道次搅拌摩擦加工对AZ91镁合金组织和性能影响[J]. 航空材料学报, 2016, 36(36): 1: 33 − 38.

    Lu Zhiloong, Zhang Datong, Zhang Wen, et al. Microstructure and properties of AZ91 magnesium alloy prepared by multi-pass friction stir processing[J]. Journal of Aeronautical Material, 2016, 36(36): 1: 33 − 38.
    Yang Z, Li J P, Zhang Z X, et al. Review on research and development of magnesium alloys[J]. Acta Metallurgica Sinica (English Letter), 2008, 21(5): 313 − 328. doi: 10.1016/S1006-7191(08)60054-X
    唐昌平, 左国良, 李志云, 等. Mg-Gd系合金的合金化研究进展[J]. 材料导报, 2018, 32(11): 3760 − 3767.

    Tang Changping, Zuo Guoliang, Li Zhiyun, et al. An overview on alloying research of Mg-Gd alloys[J]. Material Reports, 2018, 32(11): 3760 − 3767.
    Lei Z L, Bi J, Li P, et al. Melt flow and grain refining in ultrasonic vibration assisted laser welding process of AZ31B magnesium[J]. Optics and Laser Technology, 2018, 108(9): 409 − 417.
    檀财旺, 李俐群, 陈彦宾, 等. AZ31B镁合金的光纤激光与CO2激光焊接特性[J]. 中国激光, 2011, 38(6): 166 − 172.

    Tan Caiwang, Li Liqun, Chen Yanbin, et al. Characteristics of fiber laser and CO2 laser welding AZ31B magnesium alloys[J]. Chinese Journal of Lasers, 2011, 38(6): 166 − 172.
    唐舵, 王春明, 田曼, 等. SUS301L-HT不锈钢激光焊接与MIG焊接对比试验研究[J]. 中国激光, 2015, 42(7): 98 − 105.

    Tang Duo, Wang Chunming, Tian Man, et al. Contrasting study on quality of SUS301L-HT jointsin fiber laser welding and MIG welding[J]. Chinese Journal of Lasers, 2015, 42(7): 98 − 105.
    徐良, 雷振, 杨海锋, 等. 激光—电弧复合焊接头根部特性分析[J]. 焊接学报, 2019, 40(3): 76 − 79.

    Xu Liang, Lei Zhen, Yang Haifeng, et al. Study on the root characteristics of laser arc hybrid welding joint[J]. Transactions of the China Welding Institution, 2019, 40(3): 76 − 79.
    许飞, 陈俐, 芦伟, 等. 热输入对6A02铝合金光纤激光焊缝成形的影响[J]. 焊接学报, 2017, 38(8): 119 − 123.

    Xu Fei, Chen Li, Lu Wei, et al. Effect of heat input on weld appearance for fiber laser welding 6A02 aluminum alloy[J]. Transactions of The China Welding Institution, 2017, 38(8): 119 − 123.
    Hao K D, Wang H Z, Gao M, et al. Laser welding of AZ31B magnesium alloy with beam oscillation[J]. Journal of Material Research and Technology, 2019, 8(3): 3044 − 3053. doi: 10.1016/j.jmrt.2019.04.024
    Dai J, Huang J, Li Z G, et al. Effects of heat input on microstructure and mechanical properties of laser-welded Mg-rare earth alloy[J]. Journal of Materials Engineering and Performance, 2013, 22(1): 64 − 70. doi: 10.1007/s11665-012-0173-8
    Yan K, Su J S, Zhao Y. Microstructure and mechanical properties of the laser-welded Mg-3Nd-0.4Zr (NZ30K) magnesium alloy[J]. Optics and Laser Technology, 2017, 93(8): 109 − 117.
    Li T T, Song G, Zhang Z D, et al. Mechanical properties and microstructures of laser-TIG welded ME21 rare earth Mg alloy[J]. Materials, 2019, 12(13): 2188 − 2201. doi: 10.3390/ma12132188
    齐欣. Mg-Gd-Y-Zr镁合金的轧制及焊接工艺研究[D]. 长沙: 湖南大学, 2013.

    Qi Xin. Study of rolling and welding process on Mg-Gd-Y-Zr magnesium alloy[D]. Changsha: Hunan University, 2013.
    Wang L Y, Huang J, Li Z G, et al. Microstructure and strengthening mechanism of fiber laser-welded high-strength Mg-Gd-Y-Zr alloy[J]. Journal of Materials Engineering and Performance, 2016, 25(10): 4506 − 4513. doi: 10.1007/s11665-016-2260-8
    Wang L Y, Huang J, Dong J, et al. High temperature tensile properties of laser-welded high-strength Mg-Gd-Y-Zr alloy in as-welded and heat-treated conditions[J]. Weld World, 2017, 61(2): 299 − 306. doi: 10.1007/s40194-016-0404-y
    房元斌, 蹤雪梅, 张华清, 等. 基于正交试验的T形接头焊接工艺优化[J]. 焊接学报, 2017, 38(8): 45 − 49.

    Fang Yuanbin, Zong Xuemei, Zhang Huaqing, et al. Optimization on welding procedure of T-joint based on orthogonal test[J]. Transactions of the China Welding Institution, 2017, 38(8): 45 − 49.
    陶博浩, 李红, 宋永伦, 等. 电阻点焊冷轧DP600双相钢焊接接头性能的正交试验分析[J]. 焊接学报, 2013, 34(6): 81 − 84.

    Tao Bojie, Li Hong, Song Yonglun, et al. Analysis of orthogonal test of properties of dual-phase DP600 steel resistance spot welded joint[J]. Transactions of the China Welding Institution, 2013, 34(6): 81 − 84.
    牛济泰. 材料和热加工领域的物理模拟技术[M]. 北京: 国防工业出版社, 1999.

    Niu Jitai. Physical simulation in materials and hot-working[M]. Beijing: National Defense Industry Press, 1999.
    Yang Z, Li J P, Guo Y C, et al. Precipitation process and effect on mechanical properties of Mg–9Gd–3Y–0.6Zn–0.5Zr alloy[J]. Materials Science and Engineering A, 2007, 454(4): 274 − 280.
    Zhang X M, Ning Z Z, Li L, et al. Microstructures and mechanical properties of EW93 magnesium alloy with rolled-T5 temper[J]. Journal of Central South University(Science and Technology), 2011, 42(12): 3663 − 3667.
    何上明. Mg-Gd-Y-Zr(-Ca)合金的微观组织演变、性能和断裂行为研究[D]. 上海: 上海交通大学, 2007.

    He Shangming. Study on the microstructural evolution, properties and fracture behavior of Mg-Gd-Y-Zr(Ca) alloys[D]. Shanghai: Shang Hai Jiao Tong University, 2007.
  • Related Articles

    [1]ZHANG Chuanchen, ZHANG Tiancang, ZHAO Chunling. Microstructure and high temperature mechanical properties of inertia friction welding joint of K447A + GH4169[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(10): 137-141. DOI: 10.12073/j.hjxb.2019400275
    [2]LI Zhifeng, LI Xiaoqiang, LI Li, LOU Li, QU Shengguan. Analysis on high temperature properties of TiAl alloy joints brazd with a Ti-based filler[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(5): 148-153. DOI: 10.12073/j.hjxb.2019400143
    [3]ZHANG Jing, HAN Wentuo, CHANG Yongqin, WAN Farong. Microstructure and mechanical properties in friction stir welded nanostructured oxide dispersion strengthened steel joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2015, 36(10): 9-11,40.
    [4]WU Bingzhi, XU Yujun, AN Hongliang, SUN Jingtao. Property and microstructure of deposited metal with high strength wire[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2014, 35(4): 53-57.
    [5]TAO Bohao, LI Hong, SONG Yonglun, LI Qiang. Analysis of orthogonal test of properties of dual-phase DP600 steel resistance spot welded joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2013, (6): 81-84.
    [6]ZUO Congjin, LI Jinwei, YU Wei, XU Haiying. Tensile performance of Ti-55 and Ti-60 joints welded by electron beam welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2011, (4): 103-106.
    [7]CUI Li, LI Xiaoyan, HE Dingyong, KUTSUNA Muneharu. Fiber laser-MIG hybrid welding process of commercial pure titanium and its properties[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2009, (11): 33-36.
    [8]CHEN Jianfeng, CAO Pingzhou, DONG Xianfeng. Experiment on tensile and shear strength of front fillet welded joint post-high-temperatures[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2009, (9): 81-84.
    [9]ZHANG Guodong, XUE Jilin, ZHOU Chang Yu. Optimization on welding procedure of high temperature pipeline based on orthogonal test design[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (11): 53-56.
    [10]YIN Lixiang, XU Hongji, WEI Zhiyu, XIE Ming, WANG Yajun. Microstructures and high-temperature properties of TC4 titanium alloy joints welded by electron beam[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2007, (10): 49-52.

Catalog

    Article views (384) PDF downloads (20) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return