Advanced Search
REN Zhen′an, ZHENG Siqiang, HUANG Fei, LIU Wumu. Compression fatigue behavior of Fe-C-Cr-Nb alloys surfaced on 45 steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(10): 54-59. DOI: 10.12073/j.hjxb.2019400263
Citation: REN Zhen′an, ZHENG Siqiang, HUANG Fei, LIU Wumu. Compression fatigue behavior of Fe-C-Cr-Nb alloys surfaced on 45 steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(10): 54-59. DOI: 10.12073/j.hjxb.2019400263

Compression fatigue behavior of Fe-C-Cr-Nb alloys surfaced on 45 steel

More Information
  • Received Date: April 25, 2018
  • Available Online: July 12, 2020
  • The compression fatigue behavior of six kinds of Fe-C-Cr-Nb surfacing alloys on the base metal of 45 steel was tested with self-designed dual-notch fatigue specimens according to the compression fatigue working condition of the cement squeeze roller. In-situ observation and laser confocal crack analyses were carried out on the surface of fatigue specimens. The stress-strain concentration of the notches accelerated the accumulation of slip lines at local HAZ just below the notches and plastic deformation zones formed there. At the same time, fatigue cracks were initiated at the bottom edge of the notches and propagated into HAZ through surfacing alloys. Fatigue cracks were initiated and propagated along the fusion line as well and eventually resulted in fatigue failure. The experimental results show that the a-N curves of fatigue specimens were approximately straight lines. When the matrix micro-structures of the surfacing alloys were mainly composed of martensite with high hardness, the fatigue crack propagation rate is big and the fatigue life is only 50,000 times. While the micro-structures were composed of soft ferrite or austenite, the propagation rate is small and the fatigue life is up to 540,000 times.
  • 钟群鹏. 材料失效诊断、预测和预防[M]. 长沙:中南大学出版社, 2009.
    Li S, Zhang Y, Qi L, et al. Effect of single tensile overload on fatigue crack growth behavior in DP780 dual phase steel[J]. International Journal of Fatigue, 2018, 106: 49 − 55. doi: 10.1016/j.ijfatigue.2017.09.018
    岑耀东, 陈芙蓉. 超声冲击处理冷轧钢板缝焊接头的疲劳性能[J]. 焊接学报, 2017, 38(6): 115 − 119.

    Cen Yaodong, Chen Furong. Fatigue performance improvement of SPCC steel resistance seam welding by ultrasonic impact treatment[J]. Transactions of the China Welding Institution, 2017, 38(6): 115 − 119.
    Nelson D V, Long Z. Bending fatigue of carburized steel at very long lives[J]. Journal of Materials Engineering & Performance, 2015, 25(1): 1 − 7.
    Rui F M, Ferreira L, Reis L, et al. Fatigue crack growth under cyclic torsional loading[J]. Theoretical & Applied Fracture Mechanics, 2016, 85: 56 − 66.
    修俊杰, 李 杨, 张潇予. 径向间隙对304L不锈钢振动疲劳性能的影响[J]. 焊接学报, 2017, 38(8): 95 − 98. doi: 10.12073/j.hjxb.20170102001

    Xiu Junjie, Li Yang, Zhang Xiaoyu. Research on radial gap of 304L stainless steel piping with socket weld under vibration fatigue[J]. Transactions of the China Welding Institution, 2017, 38(8): 95 − 98. doi: 10.12073/j.hjxb.20170102001
    朴钟宇, 徐滨士, 王海斗, 等. 表征涂层接触疲劳寿命方法的试验研究[J]. 中国机械工程, 2009, 20(13): 1616 − 1618. doi: 10.3321/j.issn:1004-132X.2009.13.023

    Piao Zhongyu, Xu Binshi, Wang Haidou, et al. Investigation of characterization method for the contact fatigue-life of coating[J]. China Mechanical Engineering, 2009, 20(13): 1616 − 1618. doi: 10.3321/j.issn:1004-132X.2009.13.023
    魏建军, 潘 健, 黄智泉, 等. 耐磨堆焊材料在水泥工业的应用现状及发展前景[J]. 中国表面工程, 2009, 22(5): 8 − 12.

    Wei Jianjun, Pan Jian, Huang Zhiquan, et al. The applying actuality and developing foreground of hardfacing materials in cement industry[J]. China Surface Engineering, 2009, 22(5): 8 − 12.
    李庆华, 黄博滔, 周宝民, 等. 超高韧性水泥基复合材料单轴压缩疲劳性能研究[J]. 建筑结构学报, 2016, 37(1): 135 − 142.

    Li Qinghua, Huang Botao, Zhou Baomin, et al. Study on compression fatigue properties of ultra high toughness cementitious composites[J]. Journal of Building Structures, 2016, 37(1): 135 − 142.
    姚 宁, 尹东海, 张广泰, 等. 橡胶压缩疲劳性能的研究[J]. 橡胶科技, 2015, 13(7): 19 − 22. doi: 10.3969/j.issn.2095-5448.2015.07.008

    Yao Ning, Yin Donghai, Zhang Guangtai, et al. Compression fatigue properties of different rubber materials[J]. Rubber Science and Technology, 2015, 13(7): 19 − 22. doi: 10.3969/j.issn.2095-5448.2015.07.008
    景玉龙, 杜华太, 江美娟, 等. 定载荷下MWNTs/NR复合材料动态压缩疲劳性能研究[J]. 弹性体, 2015(2): 44 − 49. doi: 10.3969/j.issn.1005-3174.2015.02.009

    Jing Yulong, Du Huatai, Jiang Meijuan, et al. Research on the dynamic compressive fatigue property of MWNTs/NR composite in certain load[J]. China Elastomerics, 2015(2): 44 − 49. doi: 10.3969/j.issn.1005-3174.2015.02.009
    陈汉林. 水泥挤压辊堆焊层抗疲劳性能研究[D]. 长春: 吉林大学, 2017.
    王 璞, 董建新, 张麦仓, 等. GH864合金蠕变/疲劳裂纹扩展速率及a-N 曲线分析[J]. 稀有金属材料与工程, 2011, 40(4): 630 − 634.

    Wang Pu, Dong Jianxin, Zhang Maicang, et al. Analysis of fatigue/creep crack propagations rates and a-N curves of GH864 alloy[J]. Rare Metal Materials and Engineering, 2011, 40(4): 630 − 634.
    刘新东, 郝际平. 连续介质损伤力学[M]. 北京: 国防工业出版社, 2011.
  • Related Articles

    [1]KONG Da, ZHANG Liang, YANG Fan. Fatigue life prediction of SnAgCu-X solder joints based on Anand model[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2017, 38(4): 17-21. DOI: 10.12073/j.hjxb.20170404
    [2]YIN Chengjiang, SONG Tianmin, LI Wanli. Effect of high-temperature welding on fatigue life of 2.25Cr1Mo steel joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2015, 36(4): 106-108.
    [3]ZHAO Dongsheng, WU Guoqiang, LIU Yujun, LIU Wen, JI Zhuoshang. Effect of welding residual stress on fatigue life of Invar steel welded joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2013, (4): 93-95,108.
    [4]SUN Chengzhi, CAO Guangjun. Fatigue life simulation of spot weld based on equivalent structure stresses[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2011, (1): 105-108.
    [5]ZHANG Liang, XUE Songbai, HAN Zongjie, LU Fangyan, YU Shenglin, LAI Zhongmin. Fatigue life prediction of SnAgCu soldered joints of FCBGA device[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (7): 85-88.
    [6]DING Yanchuang, ZHAO Wenzhong. Stiffness coordination strategy for increasing fatigue life and its application in welded structure[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2007, (12): 31-34.
    [7]Li Zhen, Zheng Xiulin. Prediction of Fatigue Life for Peened Butt Welds of 16Mn Steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1997, (3): 151-158.
    [8]Lü Baotong, Zheng Xiulin. Fatigue life prediction for butt welds of 30CrMnSiNi2A steel containing welding delect[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1994, (4): 241-247.
    [9]Ling Chao, Zheng Xiulin. Overloading effect upon fatigue life of 16Mn steel butt welds[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1991, (4): 247-251.
    [10]Xing Guochen, Fang Dexin. INCREASING FATIGUE LIFE OF WELDED FRAME BOGIE FOR RAILWAY COACH[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1990, (3): 181-185.
  • Cited by

    Periodical cited type(0)

    Other cited types(2)

Catalog

    Article views (383) PDF downloads (22) Cited by(2)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return