Advanced Search
HU Hongwei, ZHANG Jie, PENG Gang, YI Kefu, WANG Lei. Defect classification for ultrasonic inspection in weld seam based on LBP-KPCA feature extraction[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(6): 34-39. DOI: 10.12073/j.hjxb.2019400151
Citation: HU Hongwei, ZHANG Jie, PENG Gang, YI Kefu, WANG Lei. Defect classification for ultrasonic inspection in weld seam based on LBP-KPCA feature extraction[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(6): 34-39. DOI: 10.12073/j.hjxb.2019400151

Defect classification for ultrasonic inspection in weld seam based on LBP-KPCA feature extraction

More Information
  • Received Date: August 07, 2018
  • Weld defects affect the structural safety and the defect classification is important for structural safety evaluation. This paper proposes a method which combines one-dimensional local binary pattern (1-D LBP) algorithm and kernel principal component analysis (KPCA) to extract the characteristics of weld defect echo signal. The 1-D LBP algorithm is used to extract the LBP features of the defect echo signal, and the principal component analysis of the LBP features set is carried out by KPCA. The top N principal components with the contribution rate of more than 90% are selected as the feature vectors for defect classification. The automatic classification of defect types is realized by support vector machine (SVM) based on radial basis function. The experiments of defect features extraction and classification were carried out with the weld defects of slag, porosity and non-penetration. The results show that the accuracy of defect classification is 96.7% when the LBP-KPCA features are used, which is superior to the conventional features. The proposed method provides an important reference for defect classification and nondestructive evaluation of weld defects.
  • Murugan R, Venugobal P R, Thyla P R, et al. Studies on the effect of weld defect on the fatigue behavior of welded structures[J]. China Welding, 2018, 27(1):53-59.
    Mu W, Gao J, Jiang H, et al. Automatic classification approach to weld defects based on PCA and SVM[J]. Insight-Non-Destructive Testing and Condition Monitoring, 2013, 55(10):535-539.
    胡文刚,刚铁.基于多探头源数据融合的焊缝缺陷识别[J].焊接学报, 2013, 34(3):45-48 Hu Wengang, Gang Tie. Recognition of weld defects based on multi-probe source data fusion[J]. Transactions of the China welding Institution, 2013, 34(3):45-48
    Chen Y, Ma H W, Zhang G M. A support vector machine approach for classification of welding defects from ultrasonic signals[J]. Nondestructive Testing and Evaluation, 2014, 29(3):243-254.
    Gang T, Takahashi Y, Wu L. Intelligent pattern recognition and diagnosis of ultrasonic inspection of welding defects based on neural network and information fusion[J]. Science and Technology of Welding and Joining, 2002, 7(5):314-320.
    Drai R, Khelil M, Benchaala A. Time frequency and wavelet transform applied to selected problems in ultrasonics NDE[J]. NDT&E International, 2002, 35(8):567-572.
    Qu Z, Chong A Y B, Chacon J L F, et al. Study on the laser-based weld surface flaw identification system employing wavelet analysis methodology[J]. Research in Nondestructive Evaluation, 2016, 27(3):137-154.
    Movafeghi A. Using empirical mode decomposition and a fuzzy algorithm for the analysis of weld defect images[J]. Insight-Non-Destructive Testing and Condition Monitoring, 2015, 57(1):35-39.
    Cruz F C, Simas Filho E F, Albuquerque M C S, et al. Efficient feature selection for neural network based detection of flaws in steel welded joints using ultrasound testing[J]. Ultrasonics, 2017, 73:1-8.
    Ojala T, Pietikäinen M, Mäenpää T. Multiresolution gray-scale and rotation invariant texture classification with local binary patterns[J]. IEEE Transactions on Pattern Analysis&Machine Intelligence, 2002(7):971-987.
    Shahriar M R, Ahsan T, Chong U P. Fault diagnosis of induction motors utilizing local binary pattern-based texture analysis[J]. Eurasip Journal on Image and Video Processing, 2013(1):29-39.
    Chatlani N, Soraghan J J. Local binary patterns for 1-D signal processing[C]//201018th European Signal Processing Conference. IEEE, 2010:95-99.
    Huang Y C, Lin C K. Method for displaying words and processing device and computer program product thereof:US 8935165B2[P]. 2015-01-13.
    Kaya Y, Uyar M, Tekin R, et al. 1D-local binary pattern based feature extraction for classification of epileptic EEG signals[J]. Applied Mathematics and Computation, 2014, 243:209-219.
    Hoshyar O, Monhammad S, Habibollah D, et al. A novel method for classification of power quality disturbances based on a new one dimensional local binary pattern approach[C]//2017 IEEE 8th Control and System Graduate Research Colloquium (ICSGRC), Malaysia:IEEE, 2017:225-229.
    McCool P, Chatlani N, Petropoulakis L, et al. 1-D local binary patterns for onset detection of myoelectric signals[C]//2012 IEEE European Signal Processing Conference. Strathclyde, UK:IEEE, 2012:499-503.
    马再超,赵荣珍,杨文瑛.转子故障特征数据分类的KPCA-BFDA方法[J].振动.测试与诊断, 2013, 33(2):192-198 Ma Zaichao, Zhao Rongzhen, Yang Wenying. KPCA-BFDA for the classification of rotor fault feature data[J]. Journal of Vibration, Measurement&Diagnosis, 2013, 33(2):192-198
    Vapnik V. The nature of statistical learning theory[M]. New York:Springer, 2013.
    Phienthrakul T, Kijsirikul B. Evolutionary strategies for hyperparameters of support vector machines based on multi-scale radial basis function kernels[J]. Soft Computing, 2010, 14(7):681-699.
    Abe S. Support vector machines for pattern classification[M]. London:Springer, 2010.
    Masnata A, Sunseri M. Neural network classification of flaws detected by ultrasonic means[J]. NDT&E International, 1996, 29(2):87-93.
    Tsui P P C, Basir O A. Wavelet basis selection and feature extraction for shift invariant ultrasound foreign body classification[J]. Ultrasonics, 2006, 45(1-4):1-14.
    Liu Z, Xu H. Kernel parameter selection for support vector machine classification[J]. Journal of Algorithms&Computational Technology, 2014, 8(2):163-177.
  • Cited by

    Periodical cited type(13)

    1. 陈明良,马志远,张东辉,付冬欣,廖静瑜,林莉. 基于SHAP可解释性的焊缝缺陷类型超声识别XGBoost模型. 无损检测. 2024(06): 36-42 .
    2. 王海军,王涛,俞慈君. 基于递归量化分析的CFRP超声检测缺陷识别方法. 浙江大学学报(工学版). 2024(08): 1604-1617 .
    3. 张睿,高美蓉,傅留虎,张鹏云,白晓露,赵娜. 基于多域多尺度深度特征自适应融合的焊缝缺陷检测研究. 振动与冲击. 2023(17): 294-305+313 .
    4. 杜志虎,韩亮,薛彦宇,丁胜夺. 基于改进Mask RCNN算法的管道焊缝缺陷检测. 电脑知识与技术. 2023(30): 16-18+24 .
    5. 吉春生. 焊缝内部缺陷TOFD图像智能定性分类研究. 中国化工装备. 2022(01): 6-10+14 .
    6. 胡曦,余震,刘海生. 多特征提取与BT-SVM的焊缝表面缺陷检测. 机械科学与技术. 2022(10): 1615-1622 .
    7. 杨德宸,吴伟,邬冠华,陈曦. KPCA-集成学习TC6锻件微小缺陷超声背散射判定模型研究. 中国测试. 2021(10): 95-102 .
    8. 杨忠华,付泽宇,付海霞. 泵塔区钢结构焊缝表面缺陷的超声红外热成像检测. 无损检测. 2021(11): 53-57 .
    9. 周兆逸,张亚南,王肖锋,刘军. 基于改正二维主成分分析的焊缝表面缺陷检测. 焊接学报. 2021(11): 70-76+101 . 本站查看
    10. 赵天伟,林莉,张东辉,马志远. 机器学习在无损检测中的应用案例浅析. 无损探伤. 2020(03): 1-4+11 .
    11. 谷静,张可帅,朱漪曼. 基于卷积神经网络的焊缝缺陷图像分类研究. 应用光学. 2020(03): 531-537 .
    12. 宋寿鹏,乔梦丽. 基于NLFM Barker编码的板材焊缝缺陷超声检测方法研究. 仪器仪表学报. 2020(04): 246-254 .
    13. 胡丹,高向东,张南峰,张艳喜,游德勇,肖小亭,孙友松. 焊缝缺陷检测现状与展望综述. 机电工程. 2020(07): 736-742 .

    Other cited types(18)

Catalog

    Article views (401) PDF downloads (85) Cited by(31)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return