Citation: | HU Hongwei, ZHANG Jie, PENG Gang, YI Kefu, WANG Lei. Defect classification for ultrasonic inspection in weld seam based on LBP-KPCA feature extraction[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(6): 34-39. DOI: 10.12073/j.hjxb.2019400151 |
Murugan R, Venugobal P R, Thyla P R, et al. Studies on the effect of weld defect on the fatigue behavior of welded structures[J]. China Welding, 2018, 27(1):53-59.
|
Mu W, Gao J, Jiang H, et al. Automatic classification approach to weld defects based on PCA and SVM[J]. Insight-Non-Destructive Testing and Condition Monitoring, 2013, 55(10):535-539.
|
胡文刚,刚铁.基于多探头源数据融合的焊缝缺陷识别[J].焊接学报, 2013, 34(3):45-48 Hu Wengang, Gang Tie. Recognition of weld defects based on multi-probe source data fusion[J]. Transactions of the China welding Institution, 2013, 34(3):45-48
|
Chen Y, Ma H W, Zhang G M. A support vector machine approach for classification of welding defects from ultrasonic signals[J]. Nondestructive Testing and Evaluation, 2014, 29(3):243-254.
|
Gang T, Takahashi Y, Wu L. Intelligent pattern recognition and diagnosis of ultrasonic inspection of welding defects based on neural network and information fusion[J]. Science and Technology of Welding and Joining, 2002, 7(5):314-320.
|
Drai R, Khelil M, Benchaala A. Time frequency and wavelet transform applied to selected problems in ultrasonics NDE[J]. NDT&E International, 2002, 35(8):567-572.
|
Qu Z, Chong A Y B, Chacon J L F, et al. Study on the laser-based weld surface flaw identification system employing wavelet analysis methodology[J]. Research in Nondestructive Evaluation, 2016, 27(3):137-154.
|
Movafeghi A. Using empirical mode decomposition and a fuzzy algorithm for the analysis of weld defect images[J]. Insight-Non-Destructive Testing and Condition Monitoring, 2015, 57(1):35-39.
|
Cruz F C, Simas Filho E F, Albuquerque M C S, et al. Efficient feature selection for neural network based detection of flaws in steel welded joints using ultrasound testing[J]. Ultrasonics, 2017, 73:1-8.
|
Ojala T, Pietikäinen M, Mäenpää T. Multiresolution gray-scale and rotation invariant texture classification with local binary patterns[J]. IEEE Transactions on Pattern Analysis&Machine Intelligence, 2002(7):971-987.
|
Shahriar M R, Ahsan T, Chong U P. Fault diagnosis of induction motors utilizing local binary pattern-based texture analysis[J]. Eurasip Journal on Image and Video Processing, 2013(1):29-39.
|
Chatlani N, Soraghan J J. Local binary patterns for 1-D signal processing[C]//201018th European Signal Processing Conference. IEEE, 2010:95-99.
|
Huang Y C, Lin C K. Method for displaying words and processing device and computer program product thereof:US 8935165B2[P]. 2015-01-13.
|
Kaya Y, Uyar M, Tekin R, et al. 1D-local binary pattern based feature extraction for classification of epileptic EEG signals[J]. Applied Mathematics and Computation, 2014, 243:209-219.
|
Hoshyar O, Monhammad S, Habibollah D, et al. A novel method for classification of power quality disturbances based on a new one dimensional local binary pattern approach[C]//2017 IEEE 8th Control and System Graduate Research Colloquium (ICSGRC), Malaysia:IEEE, 2017:225-229.
|
McCool P, Chatlani N, Petropoulakis L, et al. 1-D local binary patterns for onset detection of myoelectric signals[C]//2012 IEEE European Signal Processing Conference. Strathclyde, UK:IEEE, 2012:499-503.
|
马再超,赵荣珍,杨文瑛.转子故障特征数据分类的KPCA-BFDA方法[J].振动.测试与诊断, 2013, 33(2):192-198 Ma Zaichao, Zhao Rongzhen, Yang Wenying. KPCA-BFDA for the classification of rotor fault feature data[J]. Journal of Vibration, Measurement&Diagnosis, 2013, 33(2):192-198
|
Vapnik V. The nature of statistical learning theory[M]. New York:Springer, 2013.
|
Phienthrakul T, Kijsirikul B. Evolutionary strategies for hyperparameters of support vector machines based on multi-scale radial basis function kernels[J]. Soft Computing, 2010, 14(7):681-699.
|
Abe S. Support vector machines for pattern classification[M]. London:Springer, 2010.
|
Masnata A, Sunseri M. Neural network classification of flaws detected by ultrasonic means[J]. NDT&E International, 1996, 29(2):87-93.
|
Tsui P P C, Basir O A. Wavelet basis selection and feature extraction for shift invariant ultrasound foreign body classification[J]. Ultrasonics, 2006, 45(1-4):1-14.
|
Liu Z, Xu H. Kernel parameter selection for support vector machine classification[J]. Journal of Algorithms&Computational Technology, 2014, 8(2):163-177.
|
1. |
陈明良,马志远,张东辉,付冬欣,廖静瑜,林莉. 基于SHAP可解释性的焊缝缺陷类型超声识别XGBoost模型. 无损检测. 2024(06): 36-42 .
![]() | |
2. |
王海军,王涛,俞慈君. 基于递归量化分析的CFRP超声检测缺陷识别方法. 浙江大学学报(工学版). 2024(08): 1604-1617 .
![]() | |
3. |
张睿,高美蓉,傅留虎,张鹏云,白晓露,赵娜. 基于多域多尺度深度特征自适应融合的焊缝缺陷检测研究. 振动与冲击. 2023(17): 294-305+313 .
![]() | |
4. |
杜志虎,韩亮,薛彦宇,丁胜夺. 基于改进Mask RCNN算法的管道焊缝缺陷检测. 电脑知识与技术. 2023(30): 16-18+24 .
![]() | |
5. |
吉春生. 焊缝内部缺陷TOFD图像智能定性分类研究. 中国化工装备. 2022(01): 6-10+14 .
![]() | |
6. |
胡曦,余震,刘海生. 多特征提取与BT-SVM的焊缝表面缺陷检测. 机械科学与技术. 2022(10): 1615-1622 .
![]() | |
7. |
杨德宸,吴伟,邬冠华,陈曦. KPCA-集成学习TC6锻件微小缺陷超声背散射判定模型研究. 中国测试. 2021(10): 95-102 .
![]() | |
8. |
杨忠华,付泽宇,付海霞. 泵塔区钢结构焊缝表面缺陷的超声红外热成像检测. 无损检测. 2021(11): 53-57 .
![]() | |
9. |
周兆逸,张亚南,王肖锋,刘军. 基于改正二维主成分分析的焊缝表面缺陷检测. 焊接学报. 2021(11): 70-76+101 .
![]() | |
10. |
赵天伟,林莉,张东辉,马志远. 机器学习在无损检测中的应用案例浅析. 无损探伤. 2020(03): 1-4+11 .
![]() | |
11. |
谷静,张可帅,朱漪曼. 基于卷积神经网络的焊缝缺陷图像分类研究. 应用光学. 2020(03): 531-537 .
![]() | |
12. |
宋寿鹏,乔梦丽. 基于NLFM Barker编码的板材焊缝缺陷超声检测方法研究. 仪器仪表学报. 2020(04): 246-254 .
![]() | |
13. |
胡丹,高向东,张南峰,张艳喜,游德勇,肖小亭,孙友松. 焊缝缺陷检测现状与展望综述. 机电工程. 2020(07): 736-742 .
![]() |