Advanced Search
HUANG Jiqiang, GAI Shouxin, XUE Long, HUANG Junfen, CAO Yingyu, ZOU Yong. Multi-pass welding strategy for thick plate with mismatched groove by robot[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(6): 60-66. DOI: 10.12073/j.hjxb.20191127002
Citation: HUANG Jiqiang, GAI Shouxin, XUE Long, HUANG Junfen, CAO Yingyu, ZOU Yong. Multi-pass welding strategy for thick plate with mismatched groove by robot[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(6): 60-66. DOI: 10.12073/j.hjxb.20191127002

Multi-pass welding strategy for thick plate with mismatched groove by robot

More Information
  • Received Date: November 26, 2019
  • Available Online: September 26, 2020
  • Thick plate components are widely used in construction machinery and heavy industry. However, the welding groove of thick plate usually has large deviation due to processing and assembling improperly. Groove gap inconsistency, groove angle deviation and misalignment of groove are the typical groove mismatched problems. According to these problems, the corresponding correction measures are proposed respectively. The deviation caused by inconsistent groove clearance can be compensated by adjusting the welding waving parameters. The groove angle deviation can be corrected by jointly adjusting welding parameters and waving parameters. By adjusting the number of weld passes and changing welding current in every weld pass cycles, the misalignment of groove group can be compensated properly. Welding experiment is executed by a welding robot on the workpiece with mismatched groove using the foregoing correction measures. The test results show that the weld is filled well and the appearance of the weld has no obvious defects. Through the observation of weld cross section, the weld beads are arranged orderly without internal defects. The test results show that the groove deviation correction method can widen the applicable conditions of thick plate welded by robot. It also provides basic data for the actual construction of thick plate welded by robot.
  • Juhani Laitila, Jari Larkiola. Effect of enhanced cooling on mechanical properties of a multipass welded martensitic steel[J]. Welding in the World, 2019, 63(3): 637 − 646. doi: 10.1007/s40194-018-00689-7
    彭杏娜, 彭云, 彭先宽, 等. 多层多道TIG焊对高强钢焊缝组织和韧性的影响[J]. 机械工程学报, 2017, 53(18): 106 − 112. doi: 10.3901/JME.2017.17.106

    Peng Xingna, Peng Yun, Peng Xiankuan, et al. Influence of multi-layer and multi-pass TIG welding process on the high strength weld metal microstructure and toughness[J]. Journal of Mechanical Engineering, 2017, 53(18): 106 − 112. doi: 10.3901/JME.2017.17.106
    刘延景, 崔海超, 芦凤桂, 等. 厚板转子钢多层多道焊接头不同微区断裂韧度的分析[J]. 焊接学报, 2018, 39(2): 105 − 108.

    Liu Yanjing, Cui Haichao, Lu Fenggui, et al. Research on the fracture toughness of micro zone in the joint based on multi-layer and multi-pass welding of rotor steel[J]. Transactions of the China Welding Institution, 2018, 39(2): 105 − 108.
    张敏, 周小华, 李继红, 等. 中厚板CO2多层多道焊对接接头焊接残余应力及其分布[J]. 西安理工大学学报, 2007, 23(4): 394 − 397. doi: 10.3969/j.issn.1006-4710.2007.04.013

    Zhang Min, Zhou Xiaohua, Li Jihong, et al. Research on finite element of residual stresses of CO2 multi-pass welding in mid-thickness plate[J]. Journal of Xi’an University of Technology, 2007, 23(4): 394 − 397. doi: 10.3969/j.issn.1006-4710.2007.04.013
    陈珊, 周春临. 机器人在多层焊接中的应用[J]. 制造业自动化, 2005, 27(1): 76 − 78. doi: 10.3969/j.issn.1009-0134.2005.01.022

    Chen Shan, Zhou Chunlin. Application of robot in multi-pass welding[J]. Manufacturing Automation, 2005, 27(1): 76 − 78. doi: 10.3969/j.issn.1009-0134.2005.01.022
    李慨, 戴士杰, 孙立新, 等. 机器人焊接大型接头多道焊填充策略[J]. 焊接学报, 2001, 22(2): 46 − 48. doi: 10.3321/j.issn:0253-360X.2001.02.012

    Li Kai, Dai Shijie, Sun Lixin, et al. Filling strategy of multi-pass welding[J]. Transactions of the China Welding Institution, 2001, 22(2): 46 − 48. doi: 10.3321/j.issn:0253-360X.2001.02.012
    Masaharu M, Seigo H, Megumi O. Development of a multi-pass welding program for arc welding robot and its application to heavy electrical section pieces[J]. Transaction of the Japan Welding Society, 1993, 24(1): 16 − 21.
    张华军, 张广军, 蔡春波, 等. 厚板弧焊机器人自定义型焊道编排策略[J]. 焊接学报, 2009, 30(3): 61 − 64. doi: 10.3321/j.issn:0253-360X.2009.03.016

    Zhang Huajun, Zhang Guangjun, Cai Chunbo, et al. Self-defining path layout strategy for thick plate arc welding robot[J]. Transactions of the China Welding Institution, 2009, 30(3): 61 − 64. doi: 10.3321/j.issn:0253-360X.2009.03.016
    张洵. 基于激光视觉传感的机器人焊接系统及多层多道规划研究[D]. 上海: 上海交通大学, 2015.

    Zhang Xun. Research on robotic welding system and multipass planning based on laser vision sensor[D]. Shanghai: Shanghai Jiao Tong University, 2015.
    安同邦, 单际国, 魏金山, 等. 热输入对1000MPa级工程机械用钢接头组织性能的影响[J]. 机械工程学报, 2014, 50(22): 42 − 49. doi: 10.3901/JME.2014.22.042

    An Tongbang, Shan Jiguo, Wei Jinshan, et al. Effect of heat input on microstructure and performance of welded joint in 1000MPa grade steel for construction machinery[J]. Journal of Mechanical Engineering, 2014, 50(22): 42 − 49. doi: 10.3901/JME.2014.22.042
  • Related Articles

    [1]LIU Xudong, SA Zicheng, FENG Jiayun, LI Haozhe, TIAN Yanhong. The Development Status On Advanced Packaging Copper Pillar Bump Interconnection Technology and Reliability[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION. DOI: 10.12073/j.hjxb.20240718001
    [2]SONG Wei, MAN Zheng, XU Jie, WEI Shoupan, CUI Muchun, SHI Xiaojian, LIU Xuesong. Fatigue reliability analysis of load-carrying cruciform joints with misalignment effects[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(6): 20-26, 34. DOI: 10.12073/j.hjxb.20220629001
    [3]NAN Xujing, LIU Xiaoyan, CHEN Leida, ZHANG Tao. Effect of thermal cycling on reliability of solder joints of ceramic column grid array package[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(2): 81-85. DOI: 10.12073/j.hjxb.20200331003
    [4]JIANG Nan, ZHANG Liang, LIU Zhiquan, XIONG Mingyue, LONG Weimin. Reliability analysis of thermal shock for SnAgCu solder joints of FCBGA devices[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(9): 39-42. DOI: 10.12073/j.hjxb.2019400232
    [5]TIAN Ye. Study on reliability of micro-solder joints for flip chip assemblies under thermal shock-crack growth mechanism[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(9): 43-45,50.
    [6]TIAN Ye. Micro-joint reliability of flip chip assembly under thermal shock-strain and stress[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(8): 67-70.
    [7]ZENG Chao, WANG Chunqing, TIAN Yanhong, ZHANG Wei. Effect of hot-cutting defect on reliability of brazing process in ceramic package manufacturing——Ⅱ. Brazing structure design[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2014, 35(11): 105-108.
    [8]GAO Lili, XUE Songbai, ZHANG Liang, SHENG Zhong. Finite element analysis on influencing factors of soldered column reliability in a CCGA device[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (7): 93-96.
    [9]LIU Xi. Fatigue reliability evaluation for welding construction containing welding defects[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (1): 89-92,96.
    [10]LIN Guoxiang, YE Jinbao, QIU Changjun. Calculating method of reliability on anti fatigue fracture of weld[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (1): 50-52.
  • Cited by

    Periodical cited type(1)

    1. 张璐霞, 林乃明, 邹娇娟, 谢瑞珍. 铝合金搅拌摩擦焊的研究现状. 热加工工艺. 2020(03): 1-6 .

    Other cited types(2)

Catalog

    Article views (610) PDF downloads (41) Cited by(3)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return