Advanced Search
ZHANG Nan, TIAN Zhiling, ZHANG Shuyan, DONG Xianchun, LINGHU Kezhi. Flash butt welding process and microstructure controlling of 380CL wheel steel with micro Ti treatment[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(1): 72-79. DOI: 10.12073/j.hjxb.20191028001
Citation: ZHANG Nan, TIAN Zhiling, ZHANG Shuyan, DONG Xianchun, LINGHU Kezhi. Flash butt welding process and microstructure controlling of 380CL wheel steel with micro Ti treatment[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(1): 72-79. DOI: 10.12073/j.hjxb.20191028001

Flash butt welding process and microstructure controlling of 380CL wheel steel with micro Ti treatment

More Information
  • Received Date: October 27, 2019
  • Available Online: July 12, 2020
  • In order to solve the problem of high micro-cracking rate and bursting rate after rim flash butt welding (FBW), the 380CL wheel steel with thickness of 6.75 mm is taken as the research object. By studying the influence of the unified flash butt welding parameters on the joint hardness, the control mechanism of the flash butt welding temperature field is established in this paper. The hardening tendency of the 380CL after FBW is further reduced by the Ti microalloying technology. It’s shown that in order to ensure the well-done production rate after flash butt welding of 380CL, it is necessary to adopt a welding specification with a large temperature gradient and a reasonable forging amount to obtain an optimal welded joint. Under the FBW parameters of the burnt amount of 19 mm, the jaw distance of 36 mm, the burning rate of 1.2 mm/s, the point upset forging time of 0.5 s, and the upset forging of 7 mm, the 380CL wheel steel with thickness of 6.75 mm can obtain the lowest hardness value of 140HV2. The welding heat simulation of the micro-Ti treated 380CL wheel steel was carried out. The deformation resistance of the upset forging at 1 000 °C or higher was reduced, and the grain refinement of the microstructure was remarkably reduced, which significantly reduced the micro-cracking rate and the burst rate after FBW of 380CL. The researches above have been further promoted and applied demonstration of FBW to high-strength rim steel.
  • 中国汽车工程学会. 节能与新能源汽车技术路线图[M]. 北京: 机械工业出版社, 2016
    张大伟, 杜林秀, 肖宝亮, 等. 乘用车轮辐用600 MPa级热轧双相钢失效原因分析[J]. 金属热处理, 2018, 43(7): 224 − 228.

    Zhang Dawei, Du Linxiu, Xiao Baoliang, et al. Failure analysis of 600 MPa hot rolled dual phase steel for passenger car wheel spoke[J]. Heat Treatment of Metals, 2018, 43(7): 224 − 228.
    马鸣图, Shi M F. 先进的高强度钢及其在汽车工业中的应用[J]. 钢铁, 2004(7): 68 − 72. doi: 10.3321/j.issn:0449-749X.2004.07.018

    Ma Mingtu, Shi M F. Advanced high strength steel and its applications in automobile industry[J]. Iron and Steel, 2004(7): 68 − 72. doi: 10.3321/j.issn:0449-749X.2004.07.018
    康永林, 邝霜, 尹显东, 等. 汽车用双相钢板的开发与研究进展[J]. 汽车工艺与材料, 2006(5): 1 − 5. doi: 10.3969/j.issn.1003-8817.2006.05.001

    Kang Yonglin, Kuang Shuang, Yin Xiandong, et al. Research on progress and development of dual phase sheet for aytomobiles[J]. Technology and Material, 2006(5): 1 − 5. doi: 10.3969/j.issn.1003-8817.2006.05.001
    Gong Y H, Gong M Y, Sun D Q. Study on microstructures and properties of preheated flash butt welded SW400 steel joints[J]. China Welding, 2018, 27(3): 42 − 52.
    王利, 杨雄飞, 陆匠心. 汽车轻量化用高强度钢板的发展[J]. 钢铁, 2006(9): 1 − 8. doi: 10.3321/j.issn:0449-749X.2006.09.001

    Wang Li, Yang Xiongfei, Lu Jiangxin. Development of high strength steel sheets for lightweight automobile[J]. Iron and Steel, 2006(9): 1 − 8. doi: 10.3321/j.issn:0449-749X.2006.09.001
    徐志欣. 590 MPa级高强钢轮辋接头组织性能与失效分析[D]. 厦门: 华侨大学, 2017.
    郗晨瑶. RS590CL钢闪光对焊接头微观组织及力学性能的研究[D]. 吉林: 吉林大学, 2016.
    张楠, 田志凌, 张书彦, 等. Q700D热影响粗晶区疲劳寿命与小裂纹扩展分析[J]. 钢铁研究学报, 2019, 31(8): 741 − 747.

    Zhang Nan, Tian Zhiling, Zhang Shuyan, et al. Prediction of fatigue life and behavior analysis of small crack[J]. Journal of Iron and Steel Research, 2019, 31(8): 741 − 747.
    张楠, 董现春, 潘辉, 等. 高Ti-Nb系高强钢焊接接头回火前后的力学行为[J]. 焊接学报, 2015, 36(5): 93 − 98.

    Zhang Nan, Dong Xianchun, Pan Hui, et al. Mechanical behavior of welded joint of a high Ti-Nb content microalloyed high-strength steel before and after drawing temper treatment[J]. Transactions of the China Welding Institution, 2015, 36(5): 93 − 98.
    董现春, 张楠, 陈延清, 等. 800 MPa级钛铌析出强化高强钢焊接接头的组织与力学性能[J]. 机械工程材料, 2014, 38(11): 21 − 25.

    Dong Xianchun, Zhang Nan, Chen Yanqing, et al. Microstructure and mechanical properties of welded joints of 800 MPa high strength steels with Ti and Nb precipitation strengthening[J]. Materials for Mechanical Engineering, 2014, 38(11): 21 − 25.
    张楠, 董现春, 徐晓宁, 等. Ti-Nb微合金化高强钢的焊接接头组织和性能[J]. 材料热处理学报, 2014, 35(6): 115 − 120.

    Zhang Nan, Dong Xianchun, Xu Xiaoning, et al. Microstructure and property of welding joint with Ti-Nb microalloyed high-strength steel[J]. Transactions of Materials and Heat Treatment, 2014, 35(6): 115 − 120.
    董现春, 张楠, 陈延清, 等. 高Ti, Nb析出强化高强钢接头强度及焊接热影响区软化行为分析[J]. 焊接学报, 2012, 33(11): 72 − 76.

    Dong Xianchun, Zhang Nan, Chen Yanqing, et al. The welded joint strength and analysis for HAZ softening behavior of high Ti and Nb precipitation strengthing high strength steel[J]. Transactions of the China Welding Institution, 2012, 33(11): 72 − 76.
    张楠, 董现春, 张熹, 等. 钛微合金化SQ700MCD高强钢粗晶热影响区软化的原因[J]. 机械工程材料, 2012, 36(4): 88 − 92.

    Zhang Nan, Dong Xianchun, Zhang Xi, et al. The softening analysis of CGHAZ in Ti microalloyed SQ700MCD steel[J]. Materials for Mechanical Engineering, 2012, 36(4): 88 − 92.
    张楠, 田志凌, 张书彦, 等. 700 MPa微合金高强钢焊接软化机理及解决方案[J]. 钢铁研究学报, 2019, 31(3): 318 − 326.

    Zhang Nan, Tian Zzhiling, Zhang Shuyan, et al. Mechanism and solution of welding softening for 700 MPa microalloyed high strength steel[J]. Journal of Iron and Steel Research, 2019, 31(3): 318 − 326.
    雍岐龙. 钢铁材料中的第二相[M]. 北京: 冶金工业出版社, 2006.
    Pereloma E V, Crawford B R, Hodgson P D. Strain-induced precipitation behaviour in hot rolled strip steel[J]. Materials Science and Engineering, 2000, 299A(1-2): 27.
    付魁军, 高铭泽, 冷雪松, 等. TiNb钢焊接热影响区微观组织与冲击性能演变规律[J]. 焊接学报, 2019, 40(5): 36 − 41.

    Fu Kuijun, Gao Mingze, Leng Xuesong, et al. Evolution of microstructure and impact property in welding HAZ of TiNb steel[J]. Transactions of the China Welding Institution, 2019, 40(5): 36 − 41.
    缪成亮, 刘振伟, 郭晖, 等. Nb含量和热输入量对X80管线钢焊接粗晶区的影响[J]. 材料热处理学报, 2012, 33(1): 99 − 105.

    Miao Chengliang, Liu Zhenwei, Gou Hui, et al. Effect of Nb content and heat input on coarse-grained welding heat affected zone of X80 pipeline steels[J]. Transactions of Materials and Heat Treatment, 2012, 33(1): 99 − 105.
    张楠, 陈延清, 徐晓宁, 等. X80管线钢Cu-Ni含量及热输入对CGHAZ冲击离散性的影响[J]. 焊接学报, 2016, 37(9): 119 − 124.

    Zhang Nan, Chen Yanqing, Xu Xiaoning, et al. Effect of Cu-Ni components in X80 pipeline and heat input on discretization of toughness in CGHAZ[J]. Transactions of the China Welding Institution, 2016, 37(9): 119 − 124.
  • Related Articles

    [1]YIN Chi, GUO Yonghuan, FAN Xiying, ZHU Zhiwei, SONG Haoxuan, ZHANG Liang. Multi-objective optimization of aluminum copper laser welding parameters based on BKA-GBRT and MOSPO[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(11): 140-144. DOI: 10.12073/j.hjxb.20240721002
    [2]LI Jiahao, SHU Linsen, HENG Zhao, WU Han. Multi-objective optimization of laser cladding parameters based on PCA and RSM-DE algorithm[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(2): 67-73. DOI: 10.12073/j.hjxb.20220310001
    [3]ZHOU Wenting, SI Yupeng, HE Hongzhou, WANG Rongjie. Design of reflow oven furnace temperature based on quantum multi-objective optimization algorithm[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(1): 85-91. DOI: 10.12073/j.hjxb.20210508001
    [4]HONG Bo, LIU Long, WANG Tao. Prediction in longeron automatic welding of generalized regression neural network by ameliorated fruit flies optimization algorithm[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2017, 38(1): 73-76.
    [5]ZHOU Jianping, XU Yan, CAO Jiong, YIN Yiliang, XU Yihao. High power supply optimization design based on BP neural network and genetic algorithm[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(4): 9-13.
    [6]GAO Xiangdong, LIU Yingying, XIAO Zhenlin, CHEN Xiaohui. Analysis of high-power disk laser welding status based on multi-sensor information fusion[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2015, 36(12): 31-34,88.
    [7]GUO Haibin, LI Guizhong. A double-characteristic fusion-control algorithm for resistance spot welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2010, (4): 105-108.
    [8]SHU Fuhua. Friction welding technological parameter optimization based on LSSVM and AFSA[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (12): 104-108.
    [9]CAI Guorui, DU Dong, TIAN Yuan, HOU Runshi, GAO Zhiling. Defect detection of X-ray images of weld using optimized heuristic search based on image information fusion[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2007, (2): 29-32.
    [10]CUI Xiaofang, MA Jun, ZHAO Haiyan, ZHAO Wenzhong, MENG Kai. Optimization of welding sequences of box-like structure based on a genetic algorithm method[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2006, (8): 5-8.
  • Cited by

    Periodical cited type(2)

    1. 赵衍华,张粟泓,王非凡,郝云飞,宋建岭,孙世烜,王国庆. 搅拌摩擦焊接与加工技术进展. 航天制造技术. 2025(01): 1-25 .
    2. 李充,田亚林,齐振国,王崴,杨彦龙,王依敬. 6082-T6铝合金无减薄搅拌摩擦焊接头组织与性能. 焊接学报. 2022(06): 102-107+119 . 本站查看

    Other cited types(1)

Catalog

    Article views (502) PDF downloads (25) Cited by(3)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return