Citation: | ZHANG Li, GUO Zhen, ZHOU Wei, BI Guijun, HAN Bing. Effect of welding speed and welding current on humping bead of vertical high-speed GMAW[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(4): 56-61. DOI: 10.12073/j.hjxb.20191021001 |
吴东升, 华学明, 叶定剑, 等. 高速 GMAW 驼峰形成过程的数值分析[J]. 焊接学报, 2016, 37(10): 5 − 8.
Wu Dongsheng, Hua Xueming, Ye Dingjian, et al. Numerical analysis of humping formation in high speed GMAW process[J]. Transactions of the China Welding Institution, 2016, 37(10): 5 − 8.
|
Wang L, Wu C, Chen J, et al. Influence of the external magnetic field on fluid flow, temperature profile and humping bead in high speed gas metal arc welding[J]. International Journal of Heat and Mass Transfer, 2018, 116: 1282 − 1291. doi: 10.1016/j.ijheatmasstransfer.2017.09.130
|
武传松, 王林, 陈姬, 等. 高速 GMAW 驼峰焊道的产生机理与抑制技术[J]. 焊接, 2016(7): 4 − 13. doi: 10.3969/j.issn.1001-1382.2016.07.002
Wu Chuansong, Wang Lin, Chen Ji, et al. Occurrence mechanism and suppression technology of humping bead in high-speed GMAW[J]. Welding & Joining, 2016(7): 4 − 13. doi: 10.3969/j.issn.1001-1382.2016.07.002
|
Nguyen T C, Weckman D C, Johnson D A, et al. High speed fusion weld bead defects[J]. Science and Technology of Welding and Joining, 2006, 11(6): 618 − 633. doi: 10.1179/174329306X128464
|
王林, 高进强, 李琰. 抑制高速 GMAW 驼峰焊道的外加磁场数值分析[J]. 焊接学报, 2016, 37(11): 109 − 112.
Wang Lin, Gao Jinqiang, Li Yan. Numerical simulation of external magnetic field for suppressing humping bead in high speed GMAW process[J]. Transactions of the China Welding Institution, 2016, 37(11): 109 − 112.
|
Meng X, Qin G, Zou Z. Investigation of humping defect in high speed gas tungsten arc welding by numerical modelling[J]. Materials & Design, 2016, 94: 69 − 78.
|
Berger P, Hügel H, Hess A, et al. Understanding of humping based on conservation of volume flow[J]. Physics Procedia, 2011, 12: 232 − 240. doi: 10.1016/j.phpro.2011.03.030
|
Lin M L, Eagar T W. Pressures produced by gas tungsten arcs[J]. Metallurgical Transactions B, 1986, 17(3): 601 − 607. doi: 10.1007/BF02670227
|
Mills K C, Keene B J. Factors affecting variable weld penetration[J]. International Materials Reviews, 1990, 35(1): 185 − 216. doi: 10.1179/095066090790323966
|
Gratzke U, Kapadia P D, Dowden J, et al. Theoretical approach to the humping phenomenon in welding processes[J]. Journal of Physics D: Applied Physics, 1992, 25(11): 1640 − 1647. doi: 10.1088/0022-3727/25/11/012
|
Mendez P F, Eagar T W. Penetration and defect formation in high-current arc welding[J]. Welding Journal, 2003, 82(10): 296s − 306s.
|
Nguyen T C, Weckman D C, Johnson D A, et al. The humping phenomenon during high speed gas metal arc welding[J]. Science and Technology of Welding and Joining, 2005, 10(4): 447 − 459. doi: 10.1179/174329305X44134
|
杨战利, 张善保, 杨永波, 等. 粗丝高速MAG焊驼峰焊道形成机理分析[J]. 焊接学报, 2013, 34(1): 61 − 64.
Yang Zhanli, Zhang Shanbao, Yang Yongbo, et al. Study on humping bead formation mechanism in thick-wire high-speed MAG welding[J]. Transactions of the China Welding Institution, 2013, 34(1): 61 − 64.
|
Chen Ji, Wu Chuansong. Effect of welding current and speed on occurrence of humping bead in high-speed GMAW[J]. China Welding, 2009, 28(2): 35 − 40.
|
Zähr J, Füssel U, Hertel M, et al. Numerical and experimental studies of the influence of process gases in TIG welding[J]. Welding in the World, 2012, 56(3−4): 85 − 92. doi: 10.1007/BF03321338
|
陈焕明, 曾敏, 曹彪. 高速CO2焊电流波形控制系统[J]. 焊接学报, 2007, 28(1): 41 − 45. doi: 10.3321/j.issn:0253-360X.2007.01.011
Chen Huanming, Zeng Min, Cao Biao. Current waveform control system of high-speed CO2 arc welding[J]. Transactions of the China Welding Institution, 2007, 28(1): 41 − 45. doi: 10.3321/j.issn:0253-360X.2007.01.011
|
Wu D, Hua X, Ye D, et al. Understanding of the weld pool convection in twin-wire GMAW process[J]. The International Journal of Advanced Manufacturing Technology, 2017, 88(1-4): 219 − 227. doi: 10.1007/s00170-016-8775-1
|
Meng X, Qin G, Zhang Y, et al. High speed TIG-MAG hybrid arc welding of mild steel plate[J]. Journal of Materials Processing Technology, 2014, 214(11): 2417 − 2424. doi: 10.1016/j.jmatprotec.2014.05.020
|
王林, 武传松, 杨丰兆, 等. 外加磁场对高速 GMAW 电弧和熔池行为的主动调控效应[J]. 机械工程学报, 2016, 52(2): 1 − 6. doi: 10.3901/JME.2016.02.001
Wang Lin, Wu Chuansong, Yang Fengzhao, et al. Proactive control effect of arc and weld pool behaviors by an external magnetic field in high speed GMAW[J]. Journal of Mechanical Engineering, 2016, 52(2): 1 − 6. doi: 10.3901/JME.2016.02.001
|
[1] | GUAN Dashu, FANG Siyan, ZHOU Zhidan, CHEN Fuqiang, CHEN Mengmeng. Effect of temperature field on the thermal stress of arc spraying[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(8): 109-112. DOI: 10.12073/j.hjxb.2019400217 |
[2] | ZHANG Lei, LIU Changqing, YU Jingwei, HU Xihai, JIN Guangri, GONG Feng. Numerical analysis of temperature field of narrow gap submerged arc welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(3): 83-87. |
[3] | ZONG Xuemei, WU Bin, ZHANG Liping, LI Wen. Numerical simulation of temperature field in weaving welding based on ladder model[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2014, 35(11): 9-12. |
[4] | ZHANG Lei, QIN Guoliang, ZHANG Chunbo, ZHAO Yushan, ZHOU Jun. Numerical simulation of radial friction welding temperature field of steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2013, (11): 32-36. |
[5] | ZHANG Xiaoqi, XU Guocheng, WANG Chunsheng, WEN Jing. Numerical simulation of the temperature field during resistance spot welding with rectangular electrode[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2009, (4): 101-104. |
[6] | HAN Guo-ming, LI Jian-qiang, YAN Qing-liang. Modeling and simulating of temperature field of laser welding for stainless steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2006, (3): 105-108. |
[7] | DU Han-bin, HU Lun-ji, WANG Dong-cuan, SUN Cheng-zhi. Simulation of the temperature field and flow field in full penetration laser welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2005, (12): 65-68,100. |
[8] | XU Wen-li, MENG Qing-gno, FANG Hong-yuan, XU Guang-yin. Temperature field of high strength aluminum ahoy sheets by twin wire welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2004, (3): 11-14. |
[9] | XUE Zhong ming, GU Lan, ZHANG Yan hua. Numerical simulation on temperature field in laser welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2003, (2): 79-82. |
[10] | Zou Zengda, Wang Xinhong, Qu Shiyao. Numerical Simulation of Temperature Field for Weld-repaired Zone of White Cast Iron[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1999, (1): 24-29. |
1. |
于鹏,蔡正标,赵明明,刘鹏,张文明. 基于焊接电信号频域特征的焊接过程稳定性评估. 焊接学报. 2023(04): 105-110+135-136 .
![]() | |
2. |
郭磊,李思豪,郭利霞,王军,陈平平,朱建涛. 基于改进MULTIMOORA方法的PCCP焊接工艺参数优选. 焊接学报. 2022(03): 74-79+117-118 .
![]() | |
3. |
那雪冬,雷承志,罗伟. 大厚度DH36高强海工钢GMAW+SAW焊接接头的微结构与力学性能. 材料科学与工程学报. 2022(04): 615-620+629 .
![]() | |
4. |
庾明达,张丽屏,邵雪娇,姜露,李辉,刘贞谷,蒲卓. 压力容器主管道分段焊接变形的数值模拟研究. 核动力工程. 2022(S2): 165-170 .
![]() | |
5. |
张涛,王晓文. 一种带LCL滤波的双丝弧焊电源EMC设计. 焊接学报. 2021(04): 92-96+101-102 .
![]() | |
6. |
曾敏,袁松,石永华,胡子鑫,王卓然. 基于异构多核的焊接集控器人机交互设计. 焊接. 2021(11): 38-41+47+63 .
![]() |