Advanced Search
ZHANG Li, GUO Zhen, ZHOU Wei, BI Guijun, HAN Bing. Effect of welding speed and welding current on humping bead of vertical high-speed GMAW[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(4): 56-61. DOI: 10.12073/j.hjxb.20191021001
Citation: ZHANG Li, GUO Zhen, ZHOU Wei, BI Guijun, HAN Bing. Effect of welding speed and welding current on humping bead of vertical high-speed GMAW[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(4): 56-61. DOI: 10.12073/j.hjxb.20191021001

Effect of welding speed and welding current on humping bead of vertical high-speed GMAW

More Information
  • Received Date: October 20, 2019
  • Available Online: July 26, 2020
  • Influence of welding speed and welding current on humping bead in the process of vertical high-speed gas metal arc welding (GMAW) was studied using the independently developed wall-climbing robot. The results show that when the welding speed or welding current exceeds a certain critical value, humping bead will generate in vertical high-speed GMAW. Moreover, the backflow liquid flow with high momentum generated by arc pressure, droplet impact force and gravity in the weld pool is the main reason for the formation of humping bead in vertical high-speed GMAW. Welding speed and current have a significant effect on the morphology of humping bead. When the welding current remains unchanged, as welding speed increases, both the spacing between humps and the height of hump decrease steadily firstly, then the rate of reduction decreases, while the width of bead decreases steadily. When the welding speed remains unchanged, as welding current increases, the spacing between humps increases firstly and then decreases, the height of hump increases firstly and then remains unchanged, while the width of bead increases steadily. In addition, the liquid metal appears to flow down when welding speed is too small or welding current is too large.
  • 吴东升, 华学明, 叶定剑, 等. 高速 GMAW 驼峰形成过程的数值分析[J]. 焊接学报, 2016, 37(10): 5 − 8.

    Wu Dongsheng, Hua Xueming, Ye Dingjian, et al. Numerical analysis of humping formation in high speed GMAW process[J]. Transactions of the China Welding Institution, 2016, 37(10): 5 − 8.
    Wang L, Wu C, Chen J, et al. Influence of the external magnetic field on fluid flow, temperature profile and humping bead in high speed gas metal arc welding[J]. International Journal of Heat and Mass Transfer, 2018, 116: 1282 − 1291. doi: 10.1016/j.ijheatmasstransfer.2017.09.130
    武传松, 王林, 陈姬, 等. 高速 GMAW 驼峰焊道的产生机理与抑制技术[J]. 焊接, 2016(7): 4 − 13. doi: 10.3969/j.issn.1001-1382.2016.07.002

    Wu Chuansong, Wang Lin, Chen Ji, et al. Occurrence mechanism and suppression technology of humping bead in high-speed GMAW[J]. Welding & Joining, 2016(7): 4 − 13. doi: 10.3969/j.issn.1001-1382.2016.07.002
    Nguyen T C, Weckman D C, Johnson D A, et al. High speed fusion weld bead defects[J]. Science and Technology of Welding and Joining, 2006, 11(6): 618 − 633. doi: 10.1179/174329306X128464
    王林, 高进强, 李琰. 抑制高速 GMAW 驼峰焊道的外加磁场数值分析[J]. 焊接学报, 2016, 37(11): 109 − 112.

    Wang Lin, Gao Jinqiang, Li Yan. Numerical simulation of external magnetic field for suppressing humping bead in high speed GMAW process[J]. Transactions of the China Welding Institution, 2016, 37(11): 109 − 112.
    Meng X, Qin G, Zou Z. Investigation of humping defect in high speed gas tungsten arc welding by numerical modelling[J]. Materials & Design, 2016, 94: 69 − 78.
    Berger P, Hügel H, Hess A, et al. Understanding of humping based on conservation of volume flow[J]. Physics Procedia, 2011, 12: 232 − 240. doi: 10.1016/j.phpro.2011.03.030
    Lin M L, Eagar T W. Pressures produced by gas tungsten arcs[J]. Metallurgical Transactions B, 1986, 17(3): 601 − 607. doi: 10.1007/BF02670227
    Mills K C, Keene B J. Factors affecting variable weld penetration[J]. International Materials Reviews, 1990, 35(1): 185 − 216. doi: 10.1179/095066090790323966
    Gratzke U, Kapadia P D, Dowden J, et al. Theoretical approach to the humping phenomenon in welding processes[J]. Journal of Physics D: Applied Physics, 1992, 25(11): 1640 − 1647. doi: 10.1088/0022-3727/25/11/012
    Mendez P F, Eagar T W. Penetration and defect formation in high-current arc welding[J]. Welding Journal, 2003, 82(10): 296s − 306s.
    Nguyen T C, Weckman D C, Johnson D A, et al. The humping phenomenon during high speed gas metal arc welding[J]. Science and Technology of Welding and Joining, 2005, 10(4): 447 − 459. doi: 10.1179/174329305X44134
    杨战利, 张善保, 杨永波, 等. 粗丝高速MAG焊驼峰焊道形成机理分析[J]. 焊接学报, 2013, 34(1): 61 − 64.

    Yang Zhanli, Zhang Shanbao, Yang Yongbo, et al. Study on humping bead formation mechanism in thick-wire high-speed MAG welding[J]. Transactions of the China Welding Institution, 2013, 34(1): 61 − 64.
    Chen Ji, Wu Chuansong. Effect of welding current and speed on occurrence of humping bead in high-speed GMAW[J]. China Welding, 2009, 28(2): 35 − 40.
    Zähr J, Füssel U, Hertel M, et al. Numerical and experimental studies of the influence of process gases in TIG welding[J]. Welding in the World, 2012, 56(3−4): 85 − 92. doi: 10.1007/BF03321338
    陈焕明, 曾敏, 曹彪. 高速CO2焊电流波形控制系统[J]. 焊接学报, 2007, 28(1): 41 − 45. doi: 10.3321/j.issn:0253-360X.2007.01.011

    Chen Huanming, Zeng Min, Cao Biao. Current waveform control system of high-speed CO2 arc welding[J]. Transactions of the China Welding Institution, 2007, 28(1): 41 − 45. doi: 10.3321/j.issn:0253-360X.2007.01.011
    Wu D, Hua X, Ye D, et al. Understanding of the weld pool convection in twin-wire GMAW process[J]. The International Journal of Advanced Manufacturing Technology, 2017, 88(1-4): 219 − 227. doi: 10.1007/s00170-016-8775-1
    Meng X, Qin G, Zhang Y, et al. High speed TIG-MAG hybrid arc welding of mild steel plate[J]. Journal of Materials Processing Technology, 2014, 214(11): 2417 − 2424. doi: 10.1016/j.jmatprotec.2014.05.020
    王林, 武传松, 杨丰兆, 等. 外加磁场对高速 GMAW 电弧和熔池行为的主动调控效应[J]. 机械工程学报, 2016, 52(2): 1 − 6. doi: 10.3901/JME.2016.02.001

    Wang Lin, Wu Chuansong, Yang Fengzhao, et al. Proactive control effect of arc and weld pool behaviors by an external magnetic field in high speed GMAW[J]. Journal of Mechanical Engineering, 2016, 52(2): 1 − 6. doi: 10.3901/JME.2016.02.001
  • Related Articles

    [1]GUAN Dashu, FANG Siyan, ZHOU Zhidan, CHEN Fuqiang, CHEN Mengmeng. Effect of temperature field on the thermal stress of arc spraying[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(8): 109-112. DOI: 10.12073/j.hjxb.2019400217
    [2]ZHANG Lei, LIU Changqing, YU Jingwei, HU Xihai, JIN Guangri, GONG Feng. Numerical analysis of temperature field of narrow gap submerged arc welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(3): 83-87.
    [3]ZONG Xuemei, WU Bin, ZHANG Liping, LI Wen. Numerical simulation of temperature field in weaving welding based on ladder model[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2014, 35(11): 9-12.
    [4]ZHANG Lei, QIN Guoliang, ZHANG Chunbo, ZHAO Yushan, ZHOU Jun. Numerical simulation of radial friction welding temperature field of steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2013, (11): 32-36.
    [5]ZHANG Xiaoqi, XU Guocheng, WANG Chunsheng, WEN Jing. Numerical simulation of the temperature field during resistance spot welding with rectangular electrode[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2009, (4): 101-104.
    [6]HAN Guo-ming, LI Jian-qiang, YAN Qing-liang. Modeling and simulating of temperature field of laser welding for stainless steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2006, (3): 105-108.
    [7]DU Han-bin, HU Lun-ji, WANG Dong-cuan, SUN Cheng-zhi. Simulation of the temperature field and flow field in full penetration laser welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2005, (12): 65-68,100.
    [8]XU Wen-li, MENG Qing-gno, FANG Hong-yuan, XU Guang-yin. Temperature field of high strength aluminum ahoy sheets by twin wire welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2004, (3): 11-14.
    [9]XUE Zhong ming, GU Lan, ZHANG Yan hua. Numerical simulation on temperature field in laser welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2003, (2): 79-82.
    [10]Zou Zengda, Wang Xinhong, Qu Shiyao. Numerical Simulation of Temperature Field for Weld-repaired Zone of White Cast Iron[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1999, (1): 24-29.
  • Cited by

    Periodical cited type(6)

    1. 于鹏,蔡正标,赵明明,刘鹏,张文明. 基于焊接电信号频域特征的焊接过程稳定性评估. 焊接学报. 2023(04): 105-110+135-136 . 本站查看
    2. 郭磊,李思豪,郭利霞,王军,陈平平,朱建涛. 基于改进MULTIMOORA方法的PCCP焊接工艺参数优选. 焊接学报. 2022(03): 74-79+117-118 . 本站查看
    3. 那雪冬,雷承志,罗伟. 大厚度DH36高强海工钢GMAW+SAW焊接接头的微结构与力学性能. 材料科学与工程学报. 2022(04): 615-620+629 .
    4. 庾明达,张丽屏,邵雪娇,姜露,李辉,刘贞谷,蒲卓. 压力容器主管道分段焊接变形的数值模拟研究. 核动力工程. 2022(S2): 165-170 .
    5. 张涛,王晓文. 一种带LCL滤波的双丝弧焊电源EMC设计. 焊接学报. 2021(04): 92-96+101-102 . 本站查看
    6. 曾敏,袁松,石永华,胡子鑫,王卓然. 基于异构多核的焊接集控器人机交互设计. 焊接. 2021(11): 38-41+47+63 .

    Other cited types(3)

Catalog

    Article views (473) PDF downloads (38) Cited by(9)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return