Advanced Search
TAO Wang, SU Xuan, CHEN Xi, CHEN Yanbin. Microstructural characteristics and property of laser cladded TC4+AlSi10Mg composite coating on the CFRP surface[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(5): 30-35. DOI: 10.12073/j.hjxb.20190924001
Citation: TAO Wang, SU Xuan, CHEN Xi, CHEN Yanbin. Microstructural characteristics and property of laser cladded TC4+AlSi10Mg composite coating on the CFRP surface[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(5): 30-35. DOI: 10.12073/j.hjxb.20190924001

Microstructural characteristics and property of laser cladded TC4+AlSi10Mg composite coating on the CFRP surface

More Information
  • Received Date: September 23, 2019
  • Available Online: September 26, 2020
  • TC4+AlSi10Mg composite coating was successfully prepared on the surface of carbon fiber reinforced plastics (CFRP) by laser cladding technology. Microstructure, elemental composition and distribution as well as phase composition of the interface layer between the TC4+AlSi10Mg composite coating and CFRP substrate were analyzed by scanning electron microscopy, energy disperse spectroscopy, and transmission electron microscopy. Hardness was measured by nanoindentor along the vertical direction from the composite coating to the CFRP substrate. Research findings showed that laser cladding technology could be applied to fabricate uniform and continuous TC4 coating on the surface of CFRP substrate. Upon the heat effect of laser cladding, the TC4+AlSi10Mg composite powder melted and then penetrated into the interior of the CFRP substrate, thus achieving a good metallurgical bonding. Finally, a continuous interface layer formed among carbon fiber, plastics, and composite coating. The interface layer between the TC4+AlSi10Mg composite coating and CFRP substrate was mainly composed of TiC, Ti3Al, TiS2, and Ti3AlC phases. The average hardness of the CFRP substrate was 10.15 HV, while the maximum hardness of the composite coating was 1 914 HV. In addition, based on experimental observation and theoretical analysis, the dominant interface reaction mechanism of the laser cladded TC4+AlSi10Mg composite coating on the CFRP surface can be drawn as follows: Ti(s) + C(s) → TiC(s), Al(1) + 3Ti(s) → Ti3Al(s).
  • Pan L, Yapici U. A comparative study on mechanical properties of carbon fiber/PEEK composites[J]. Advanced Composite Materials, 2016, 25(4): 359 − 374. doi: 10.1080/09243046.2014.996961
    Chen C, Xie X, Xie Y, et al. Metallization of polyether ether ketone (PEEK) by copper coating via cold spray[J]. Surface and Coatings Technology, 2018, 342: 209 − 219. doi: 10.1016/j.surfcoat.2018.02.087
    Wu S, Ma Z, Xiao G, et al. Study on properties of Al film on CFRP after cryogenic-thermal cycling[J]. Physics Procedia, 2011, 18: 279 − 284. doi: 10.1016/j.phpro.2011.06.095
    Siegel J, Kotál V. Preparation of thin metal layers on polymers[J]. Acta Polytechnica, 2007, 47(1): 9 − 11.
    Gonzalez R, Ashrafizadeh H, Lopera A, et al. A review of thermal spray metallization of polymer-based structures[J]. Journal of Thermal Spray Technology, 2016, 25(5): 897 − 919. doi: 10.1007/s11666-016-0415-7
    Che H, Chu X, Vo P, et al. Metallization of various polymers by cold spray[J]. Journal of Thermal Spray Technology, 2018, 27: 169 − 178. doi: 10.1007/s11666-017-0663-1
    Che H, Vo P, Yue S. Metallization of carbon fibre reinforced polymers by cold spray[J]. Surface and Coatings Technology, 2017, 313: 236 − 247. doi: 10.1016/j.surfcoat.2017.01.083
    Ashrafizadeh H, Mertiny P, Mcdonald A. Determination of temperature distribution within polyurethane substrates during deposition of flame-sprayed aluminum–12 silicon coatings using Green's function modeling and experiments[J]. Surface and Coatings Technology, 2014, 259: 625 − 636. doi: 10.1016/j.surfcoat.2014.10.020
    Gardon M, Latorre A, Torrell M, et al. Cold gas spray titanium coatings onto a biocompatible polymer[J]. Materials Letters, 2013, 106: 97 − 99. doi: 10.1016/j.matlet.2013.04.115
    Dai J, Li S, Zhang H, et al. Microstructure and high-temperature oxidation resistance of Ti-Al-Nb coatings on a Ti-6Al-4V alloy fabricated by laser surface alloying[J]. Surface and Coatings Technology, 2018, 344: 479 − 488. doi: 10.1016/j.surfcoat.2018.03.060
    Su X, Tao W, Chen Y, et al. Microstructural characteristics and formation mechanism of laser cladding of titanium alloys on carbon fiber reinforced thermoplastics[J]. Materials Letters, 2017, 195: 228 − 231. doi: 10.1016/j.matlet.2017.02.102
    傅卫, 方洪渊, 白新波, 等. 工艺路径对多层多道激光熔覆残余应力的影响[J]. 焊接学报, 2019, 40(6): 29 − 33. doi: 10.12073/j.hjxb.2019400150

    Fu Wei, Fang Hongyuan, Bai Xinbo, et al. Effect of process paths on residual stress of multi-layer and multi-pass laser cladding[J]. Transactions of the China Welding Institution, 2019, 40(6): 29 − 33. doi: 10.12073/j.hjxb.2019400150
    刘洪喜, 李庆铃, 张晓伟, 等. 激光熔覆Ti-Al金属间化合物复合涂层的显微组织和性能[J]. 中国有色金属学报, 2017, 27(6): 1140 − 1147.

    Liu Hongxi, Li Qingling, Zhang Xiaowei, et al. Microstructures and property of Ti-Al intermetallic compound composite coating prepared by laser cladding[J]. The Chinese Journal of Nonferrous Metals, 2017, 27(6): 1140 − 1147.
    Perng L. Thermal decomposition characteristics of poly (phenylene sulfide) by stepwise Py-GC/MS and TG/MS techniques[J]. Polymer Degradation and Stability, 2000, 69(3): 323 − 332. doi: 10.1016/S0141-3910(00)00077-X
    张作贵, 刘相法, 边秀房. Al-Ti-C系中TiC形成的热力学与动力学研究[J]. 金属学报, 2000, 36(10): 1025 − 1029. doi: 10.3321/j.issn:0412-1961.2000.10.004

    Zhang Zuogui, Liu Xiangfa, Bian Xiufang. Thermodynamics and kinetic of forming TiC in Al-Ti-C system[J]. Acta Metallurgica Sinica, 2000, 36(10): 1025 − 1029. doi: 10.3321/j.issn:0412-1961.2000.10.004
  • Cited by

    Periodical cited type(5)

    1. 时中猛,邹超,周飞宇,赵建平. 碳纤维增强树脂基复合材料紫外老化机理及寿命预测. 压力容器. 2022(05): 8-15+59 .
    2. 王胜,刘文军,郑舜,姜昊,吴军,尹凌鹏. TC4钛合金表面激光熔覆Fe35A合金工艺参数优化. 应用激光. 2022(05): 37-42 .
    3. 王聪,毛从强,王冬春,贾丽荣,栾程群,隋江雷. 激光熔覆Fe-Cr-Co-W合金系熔覆层硬质相的微观形貌与摩擦行为. 焊接. 2022(11): 29-34 .
    4. 田玉芹,刘纪新,姜宝华. 掘进机截齿表面合金熔覆强化研究. 煤矿机械. 2021(02): 93-96 .
    5. 郑广芝,袁建辉,张晨,张天理,刘垚,赵昊阳. 基于Cu和WS_2改性的镍基涂层制备及摩擦性能. 焊接. 2021(07): 15-22+62-63 .

    Other cited types(1)

Catalog

    Article views (670) PDF downloads (44) Cited by(6)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return