Advanced Search
TAO Wang, SU Xuan, CHEN Xi, CHEN Yanbin. Microstructural characteristics and property of laser cladded TC4+AlSi10Mg composite coating on the CFRP surface[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(5): 30-35. DOI: 10.12073/j.hjxb.20190924001
Citation: TAO Wang, SU Xuan, CHEN Xi, CHEN Yanbin. Microstructural characteristics and property of laser cladded TC4+AlSi10Mg composite coating on the CFRP surface[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(5): 30-35. DOI: 10.12073/j.hjxb.20190924001

Microstructural characteristics and property of laser cladded TC4+AlSi10Mg composite coating on the CFRP surface

More Information
  • Received Date: September 23, 2019
  • Available Online: September 26, 2020
  • TC4+AlSi10Mg composite coating was successfully prepared on the surface of carbon fiber reinforced plastics (CFRP) by laser cladding technology. Microstructure, elemental composition and distribution as well as phase composition of the interface layer between the TC4+AlSi10Mg composite coating and CFRP substrate were analyzed by scanning electron microscopy, energy disperse spectroscopy, and transmission electron microscopy. Hardness was measured by nanoindentor along the vertical direction from the composite coating to the CFRP substrate. Research findings showed that laser cladding technology could be applied to fabricate uniform and continuous TC4 coating on the surface of CFRP substrate. Upon the heat effect of laser cladding, the TC4+AlSi10Mg composite powder melted and then penetrated into the interior of the CFRP substrate, thus achieving a good metallurgical bonding. Finally, a continuous interface layer formed among carbon fiber, plastics, and composite coating. The interface layer between the TC4+AlSi10Mg composite coating and CFRP substrate was mainly composed of TiC, Ti3Al, TiS2, and Ti3AlC phases. The average hardness of the CFRP substrate was 10.15 HV, while the maximum hardness of the composite coating was 1 914 HV. In addition, based on experimental observation and theoretical analysis, the dominant interface reaction mechanism of the laser cladded TC4+AlSi10Mg composite coating on the CFRP surface can be drawn as follows: Ti(s) + C(s) → TiC(s), Al(1) + 3Ti(s) → Ti3Al(s).
  • Pan L, Yapici U. A comparative study on mechanical properties of carbon fiber/PEEK composites[J]. Advanced Composite Materials, 2016, 25(4): 359 − 374. doi: 10.1080/09243046.2014.996961
    Chen C, Xie X, Xie Y, et al. Metallization of polyether ether ketone (PEEK) by copper coating via cold spray[J]. Surface and Coatings Technology, 2018, 342: 209 − 219. doi: 10.1016/j.surfcoat.2018.02.087
    Wu S, Ma Z, Xiao G, et al. Study on properties of Al film on CFRP after cryogenic-thermal cycling[J]. Physics Procedia, 2011, 18: 279 − 284. doi: 10.1016/j.phpro.2011.06.095
    Siegel J, Kotál V. Preparation of thin metal layers on polymers[J]. Acta Polytechnica, 2007, 47(1): 9 − 11.
    Gonzalez R, Ashrafizadeh H, Lopera A, et al. A review of thermal spray metallization of polymer-based structures[J]. Journal of Thermal Spray Technology, 2016, 25(5): 897 − 919. doi: 10.1007/s11666-016-0415-7
    Che H, Chu X, Vo P, et al. Metallization of various polymers by cold spray[J]. Journal of Thermal Spray Technology, 2018, 27: 169 − 178. doi: 10.1007/s11666-017-0663-1
    Che H, Vo P, Yue S. Metallization of carbon fibre reinforced polymers by cold spray[J]. Surface and Coatings Technology, 2017, 313: 236 − 247. doi: 10.1016/j.surfcoat.2017.01.083
    Ashrafizadeh H, Mertiny P, Mcdonald A. Determination of temperature distribution within polyurethane substrates during deposition of flame-sprayed aluminum–12 silicon coatings using Green's function modeling and experiments[J]. Surface and Coatings Technology, 2014, 259: 625 − 636. doi: 10.1016/j.surfcoat.2014.10.020
    Gardon M, Latorre A, Torrell M, et al. Cold gas spray titanium coatings onto a biocompatible polymer[J]. Materials Letters, 2013, 106: 97 − 99. doi: 10.1016/j.matlet.2013.04.115
    Dai J, Li S, Zhang H, et al. Microstructure and high-temperature oxidation resistance of Ti-Al-Nb coatings on a Ti-6Al-4V alloy fabricated by laser surface alloying[J]. Surface and Coatings Technology, 2018, 344: 479 − 488. doi: 10.1016/j.surfcoat.2018.03.060
    Su X, Tao W, Chen Y, et al. Microstructural characteristics and formation mechanism of laser cladding of titanium alloys on carbon fiber reinforced thermoplastics[J]. Materials Letters, 2017, 195: 228 − 231. doi: 10.1016/j.matlet.2017.02.102
    傅卫, 方洪渊, 白新波, 等. 工艺路径对多层多道激光熔覆残余应力的影响[J]. 焊接学报, 2019, 40(6): 29 − 33. doi: 10.12073/j.hjxb.2019400150

    Fu Wei, Fang Hongyuan, Bai Xinbo, et al. Effect of process paths on residual stress of multi-layer and multi-pass laser cladding[J]. Transactions of the China Welding Institution, 2019, 40(6): 29 − 33. doi: 10.12073/j.hjxb.2019400150
    刘洪喜, 李庆铃, 张晓伟, 等. 激光熔覆Ti-Al金属间化合物复合涂层的显微组织和性能[J]. 中国有色金属学报, 2017, 27(6): 1140 − 1147.

    Liu Hongxi, Li Qingling, Zhang Xiaowei, et al. Microstructures and property of Ti-Al intermetallic compound composite coating prepared by laser cladding[J]. The Chinese Journal of Nonferrous Metals, 2017, 27(6): 1140 − 1147.
    Perng L. Thermal decomposition characteristics of poly (phenylene sulfide) by stepwise Py-GC/MS and TG/MS techniques[J]. Polymer Degradation and Stability, 2000, 69(3): 323 − 332. doi: 10.1016/S0141-3910(00)00077-X
    张作贵, 刘相法, 边秀房. Al-Ti-C系中TiC形成的热力学与动力学研究[J]. 金属学报, 2000, 36(10): 1025 − 1029. doi: 10.3321/j.issn:0412-1961.2000.10.004

    Zhang Zuogui, Liu Xiangfa, Bian Xiufang. Thermodynamics and kinetic of forming TiC in Al-Ti-C system[J]. Acta Metallurgica Sinica, 2000, 36(10): 1025 − 1029. doi: 10.3321/j.issn:0412-1961.2000.10.004
  • Related Articles

    [1]HE Yanming, LIANG Jiabin, ZHANG Chengyin, SHI Lei, JIN Xia, LV Chuanyang1, LI Huaxin. Microstructure and mechanical properties of high-quality AlN/Cu joints brazed by a novel AgCuTi+Y2O3 composite brazing alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION. DOI: 10.12073/j.hjxb.20240618002
    [2]GAO Yan, CUI Li, CHANG Yaoqing, GU Changshi, HE Dingyong. Microstructures and properties of fiber laser-MIG hybrid welded joints for marine corrosion resistant steel DH36[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(5): 60-66. DOI: 10.12073/j.hjxb.2019400128
    [3]XIAO Xiaoming, PENG Yun, MA Chengyong, TIAN Zhiling. Effect of heat input on microstructure and properties of weld metal in MAG welding of weathering steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2017, 38(6): 41-46.
    [4]HE Xiaomei, WANG Yaomian, ZHANG Conghui. Influence of high energy shot peening on microstructure and properties of TC4 welded joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(6): 40-44.
    [5]MENG Junsheng, JI Zesheng. Microstructure and properties of in-situ TiC-TiB2/Ti composite coating by argon arc cladding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2013, (9): 67-70.
    [6]YAN Jianhui, MA Sujuan, LIU Longfei, TANG Siwen. Effect of doped CeO2 on properties of nano-ZrO2-Y2O3 coatings[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2012, (10): 75-78.
    [7]WEI Jinshan, QI Yanchang, PENG Yun, TIAN Zhilin. Effect of heat input on the microstructure and properties of weld metal welding in a 800 MPa grade heavy steel plate with narrow gap groove[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2012, (6): 31-34.
    [8]QI Yanchang, PENG Yun, WEI Jinshan, TIAN Zhiling. Effect of carbon on microstructure and properties of C-1.5Mn-2.5Ni-0.5Cr-0.5Mo high strength steel weld metal[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2010, (11): 41-44.
    [9]ZHANG Xiaoyong, GAO Huilin, ZHUANG Chuanjing, JI Lingkang. Influence of welding heat input on microstructure and properties of coarse grain heat-affected zone in X100 pipeline steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2010, (3): 29-32.
    [10]JIN Guo, XU Binshi, WANG Haidou, LI Qingfen, WEI Shicheng. Microstructure and properties of martensite stainless steel coating by different spraying methods[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2006, (8): 39-42.
  • Cited by

    Periodical cited type(1)

    1. 马晓锋,夏攀,刘海生,史铁林,王中任. 全位置焊接熔池的深度学习检测方法. 机械工程学报. 2023(12): 272-283 .

    Other cited types(0)

Catalog

    Article views (672) PDF downloads (44) Cited by(1)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return